Learn More
A method is proposed that permits one to retrieve physical parameters of tropospheric particle size distributions, e.g., effective radius, volume, surface-area, and number concentrations, as well as the mean complex refractive index on a routine basis from backscatter and extinction coefficients at multiple wavelengths. The optical data in terms of vertical(More)
[1] During the Lindenberg Aerosol Characterization Experiment (LACE 98) simultaneous measurements with ground-based and airborne lidars and with two aircraft equipped with aerosol in situ instrumentation were performed. From the lidar measurements, particle backscatter coefficients at up to eight wavelengths between 320 and 1064 nm and particle extinction(More)
We present an inversion algorithm for the retrieval of particle size distribution parameters, i.e., mean (effective) radius, number, surface area, and volume concentration, and complex refractive index from multiwavelength lidar data. In contrast to the classical Tikhonov method, which accepts only that solution for which the discrepancy reaches its global(More)
A sensitivity study with an inversion scheme that permits one to retrieve physical parameters of tropospheric particle size distributions, e.g., effective radius, volume, surface-area, and number concentrations, as well as the mean complex refractive index from backscatter and extinction coefficients at multiple wavelengths is presented. The optical data(More)
We study the question of local solvability for second-order, left-invariant differential operators on the Heisenberg group Hn, of the form P Λ = n i,j=1 λ ij X i Y j = t XΛY, where Λ = (λ ij) is a complex n×n matrix. Such operators never satisfy a cone condition in the sense of Sjöstrand and Hörmander. We may assume that P Λ cannot be viewed as a(More)
This review provides a framework contributing to the risk assessment of acrylamide in food. It is based on the outcome of the ILSI Europe FOSIE process, a risk assessment framework for chemicals in foods and adds to the overall framework by focusing especially on exposure assessment and internal dose assessment of acrylamide in food. Since the finding that(More)
The present paper examines the particular difficulties presented by low levels of food-borne DNA-reactive genotoxic carcinogens, some of which may be difficult to eliminate completely from the diet, and proposes a structured approach for the evaluation of such compounds. While the ALARA approach is widely applicable to all substances in food that are both(More)
We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization.(More)
We analyze in classical L q (R n)-spaces, n = 2 or n = 3, 1 < q < ∞, a singular integral operator arising from the lin-earization of a hydrodynamical problem with a rotating obstacle. The corresponding system of partial differential equations of second order involves an angular derivative which is not subordinate to the Laplacian. The main tools are(More)
Signals of many types of aerosol lidars can be affected with a significant systematic error, if depolarizing scatterers are present in the atmosphere. That error is caused by a polarization-dependent receiver transmission. In this contribution we present an estimation of the magnitude of this systematic error. We show that lidar signals can be biased by(More)