Learn More
We present a comprehensive study of the one-dimensional modulation instability of partially spatially incoherent light in noninstantaneous self-focusing media. For this instability to occur, the nonlinearity has to exceed a specific threshold that depends on the coherence properties of the beam. Above this threshold a uniform-intensity partially spatially(More)
One of the fundamental axioms of quantum mechanics is associated with the Hermiticity of physical observables 1. In the case of the Hamiltonian operator, this requirement not only implies real eigenenergies but also guarantees probability conservation. Interestingly, a wide class of non-Hermitian Hamiltonians can still show entirely real spectra. Among(More)
We report on the experimental observation of modulation instability of partially spatially incoherent light beams in noninstantaneous nonlinear media and show that in such systems patterns can form spontaneously from noise. Incoherent modulation instability occurs above a specific threshold that depends on the coherence properties (correlation distance) of(More)
We show analytically, numerically, and experimentally that a transversely stable one-dimensional ͓͑1 1 1͒D͔ bright Kerr soliton can exist in a 3D bulk medium. The transverse instability of the soliton is completely eliminated if it is made sufficiently incoherent along the transverse dimension. We derive a criterion for the threshold of transverse(More)
Fabrication of surface reliefs is achieved by raster scanning dry photopolymer films under a focused laser beam. The formation of the structure takes place subsequent to illumination without any chemical treatment or wet processing. Computer-generated optical elements can be recorded quickly, easily, and at low cost. The technology is particularly well(More)
We experimentally demonstrate the interaction of an optical probe beam with both bright and dark blocker solitons formed with low optical light power in a saturable defocusing waveguide array in photorefractive lithium niobate. A phase insensitive interaction of the beams is achieved by means of counterpropagating light waves. Partial and full reflection(More)
Near-stoichiometric copper-doped lithium niobate crystals are fabricated by in-diffusion of thin layers of evaporated copper and a subsequent vapor transport equilibration treatment. The crystals are heated in a Li-rich atmosphere to increase the Li content. To determine the photorefractive properties, holographic as well as electrical measurements are(More)