Detlef Damaske

Learn More
An International Polar Year aerogeophysical investigation of the high interior of East Antarctica reveals widespread freeze-on that drives substantial mass redistribution at the bottom of the ice sheet. Although the surface accumulation of snow remains the primary mechanism for ice sheet growth, beneath Dome A, 24% of the base by area is frozen-on ice. In(More)
The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in(More)
Once an ice sheet grows beyond a critical thickness, the basal thermal regime favors melting and development of subglacial water networks. Subglacial water is necessary for bedrock erosion, but the exact mechanisms that lead to preservation of subglacial topography are unclear. Here we resolve the freezing mechanisms that lead to long-term, high-altitude(More)
[1] Past plate motion between East and West Antarctica along the West Antarctic rift system had important regional and global implications. Although extensively studied, the kinematics of the rift during Eocene-Oligocene time still remains elusive. Based on a recent detailed aeromagnetic survey from the Adare and Northern Basins, located in the northwestern(More)
The geology of the ice-covered interior of the East Antarctic shield is completely unknown; inferences about its composition and history are based on extrapolating scant outcrops from the coast inland. Although the shield is clearly composite in nature, a large part of its interior has been represented by a single Precambrian block—termed the Mawson(More)
  • 1