Dessislava Pachamanova

Learn More
We propose a framework for robust modeling of linear programming problems using uncertainty sets described by an arbitrary norm. We explicitly characterize the robust counterpart as a convex optimization problem that involves the dual norm of the given norm. Under a Euclidean norm we recover the second order cone formulation in BenTal and Nemirovski [1, 2],(More)
Value-at-Risk (VaR) is one of the most widely accepted risk measures in the financial and insurance industries, yet efficient optimization of VaR remains a very difficult problem. We propose a computationally tractable approximation method for minimizing the VaR of a portfolio based on robust optimization techniques. The method results in the optimization(More)
We illustrate the correspondence between uncertainty sets in robust optimization and some popular risk measures in finance, and show how robust optimization can be used to generalize the concepts of these risk measures. We also show that by using properly defined uncertainty sets in robust optimization models, one can construct coherent risk measures, and(More)
We study the viability of different robust optimization approaches to multiperiod portfolio selection. Robust optimization models treat future asset returns as uncertain coefficients in an optimization problem, and map the level of risk aversion of the investor to the level of tolerance of the total error in asset return forecasts.We suggest robust(More)
This paper presents an asset liability management model based on robust optimization techniques. The model explicitly takes into consideration the time-varying aspect of investment opportunities. The emphasis of the proposed approach is on computational tractability and practical appeal. Computational studies with real market data study the performance of(More)
This paper presents a new measure of skewness, skewness-aware deviation, that can be linked to prospective satisficing risk measures and tail risk measures such as Value-at-Risk. We show that this measure of skewness arises naturally also when one thinks of maximizing the certainty equivalent for an investor with a negative exponential utility function,(More)
T article illustrates how simulation can be used in the classroom for modeling customer behavior in the context of customer lifetime value estimation. Operations research instructors could use this exercise to introduce multiperiod spreadsheet simulation models in a business setting that is of great importance in practice, and the simulation approach to(More)