Despoina M Kepaptsoglou

Learn More
Knowing and controlling the resistivity of an individual nanowire (NW) is crucial for the production of new sensors and devices. For ZnO NWs this is poorly understood; a 10(8) variation in resistivity has previously been reported, making the production of reproducible devices almost impossible. Here, we provide accurate resistivity measurements of(More)
Magnetoelectric oxide heterostructures are proposed active layers for spintronic memory and logic devices, where information is conveyed through spin transport in the solid state. Incomplete theories of the coupling between local strain, charge, and magnetic order have limited their deployment into new information and communication technologies. In this(More)
Thin-film oxide heterostructures show great potential for use in spintronic memories, where electronic charge and spin are coupled to transport information. Here we use a La0.7Sr0.3MnO3 (LSMO)/PbZr0.2Ti0.8O3 (PZT) model system to explore how local variations in electronic and magnetic phases mediate this coupling. We present direct, local measurements of(More)
The ability to control the properties of electrical contacts to nanostructures is essential to realize operational nanodevices. Here, we show that the electrical behavior of the nanocontacts between free-standing ZnO nanowires and the catalytic Au particle used for their growth can switch from Schottky to Ohmic depending on the size of the Au particles in(More)
Selecting the electrical properties of nanomaterials is essential if their potential as manufacturable devices is to be reached. Here, we show that the addition or removal of native semiconductor material at the edge of a nanocontact can be used to determine the electrical transport properties of metal-nanowire interfaces. While the transport properties of(More)
Manufacturable nanodevices must now be the predominant goal of nanotechnological research to ensure the enhanced properties of nanomaterials can be fully exploited and fulfill the promise that fundamental science has exposed. Here, we test the electrical stability of Au nanocatalyst-ZnO nanowire contacts to determine the limits of the electrical transport(More)
The passage of an electric current through graphite or few-layer graphene can result in a striking structural transformation, but there is disagreement about the precise nature of this process. Some workers have interpreted the phenomenon in terms of the sublimation and edge reconstruction of essentially flat graphitic structures. An alternative explanation(More)
  • 1