Desmond Rodney Lim

Learn More
We demonstrate 0.8-dB/cm transmission loss for a single-mode, strip Si/SiO(2) waveguide with submicrometer cross-sectional dimensions. We compare the conventional waveguide-fabrication method with two smoothing technologies that we have developed, oxidation smoothing and anisotropic etching. We observe significant reduction of sidewall roughness with our(More)
Strip-line pedestal antiresonant reflecting waveguides are high-confinement, silica integrated optical waveguides in which the optical modes are completely isolated from the substrate by thin high-index layers. These waveguides are particularly well suited for whispering-gallery mode excitation in high-Q microspheres. They can also be used in microphotonic(More)
A novel mode transformer was fabricated that transforms a modal area by a factor of 100. Using the mode transformer improves the efficiency of mode transformation by an order of magnitude compared with that when no mode transformer is used. With this mode transformer, input-output coupling of miniaturized, on-chip integrated optical circuits to external(More)
Whispering-gallery modes in silica microspheres can be accessed very efficiently with the recently introduced stripline pedestal antiresonant reflecting optical waveguide (SPARROW) structure. This integrated-optics coupling technique creates novel application opportunities for the high-Q spherical cavities. We report the demonstration of a narrow-band(More)
We investigate the relationship between timing jitter and cavity loss of a passively mode-locked fiber ring laser with a carbon nanotube as a saturable absorber. It is the first time that we experimentally demonstrated the reduction of timing jitter by properly increasing laser cavity loss. The lowest timing jitter is achieved when the cavity loss is(More)
  • 1