Desiré Humanes-Valera

Learn More
Spinal cord injury can produce extensive long-term reorganization of the cerebral cortex. Little is known, however, about the sequence of cortical events starting immediately after the lesion. Here we show that a complete thoracic transection of the spinal cord produces immediate functional reorganization in the primary somatosensory cortex of anesthetized(More)
Spinal cord injury may produce long-term reorganization of cortical circuits. Little is known, however, about the early neurophysiological changes occurring immediately after injury. On the one hand, complete thoracic spinal cord transection of the spinal cord immediately decreases the level of cortical spontaneous activity and increases the cortical(More)
Sensory deafferentation produces extensive reorganization of the corresponding deafferented cortex. Little is known, however, about the role of the adjacent intact cortex in this reorganization. Here we show that a complete thoracic transection of the spinal cord immediately increases the responses of the intact forepaw cortex to forepaw stimuli (above the(More)
Spinal cord injury (SCI) involves large-scale deafferentation of supraspinal structures in the somatosensory system, producing well-known long-term effects at the thalamo-cortical level. We recently showed that SCI provokes immediate changes in cortical spontaneous and evoked responses and here, we have performed a similar study to define the immediate(More)
Study design:Pharmacologically blocking the spinal cord produces sedative effects and reduces anesthesia requirements in patients and animals. Whether spinal cord injury also reduces anesthesia requirements remains unclear.Methods:We retrospectively analyzed data from urethane-anesthetized rats15 to assess anesthesia requirements immediately after complete(More)
Both central and peripheral injuries of the nervous system induce dramatic reorganization of the primary somatosensory cortex. We recently showed that spinal cord injuries at thoracic level in anesthetized rats can immediately increase the responses evoked in the forepaw cortex by forepaw stimuli (above the level of the lesion), suggesting that the(More)
During cortical development, plasticity reflects the dynamic equilibrium between increasing and decreasing functional connectivity subserved by synaptic sprouting and pruning. After adult cortical deafferentation, plasticity seems to be dominated by increased functional connectivity, leading to the classical expansive reorganization from the intact to the(More)
  • 1