Learn More
Various 'omics' technologies, including microarrays and gas chromatography mass spectrometry, can be used to identify hundreds of interesting genes, proteins and metabolites, such as differential genes, proteins and metabolites associated with diseases. Identifying metabolic pathways has become an invaluable aid to understanding the genes and metabolites(More)
The use of genome-wide, sample-matched miRNA (miRNAs)-mRNA expression data provides a powerful tool for the investigation of miRNAs and genes involved in diseases. The identification of miRNA-regulated pathways has been crucial for analysis of the role of miRNAs. However, the classical identification method fails to consider the structural information of(More)
High-throughput metabolomics technology, such as gas chromatography mass spectrometry, allows the analysis of hundreds of metabolites. Understanding that these metabolites dominate the study condition from biological pathway perspective is still a significant challenge. Pathway identification is an invaluable aid to address this issue and, thus, is urgently(More)
MicroRNAs (miRNAs) regulate disease-relevant metabolic pathways. However, most current pathway identification methods fail to consider miRNAs in addition to genes when analyzing pathways. We developed a powerful method called Subpathway-GMir to construct miRNA-regulated metabolic pathways and to identify miRNA-mediated subpathways by considering(More)
Recently, the long non-coding RNAs (lncRNAs) have obtained wide attention because they have broad and crucial functions in regulating complex biological processes. Many lncRNAs functioned by interfacing with corresponding RNA binding proteins and the complexity of lncRNAs' function was attributed to multiple lncRNA-protein interactions. To gain insights(More)
One of the challenging problems in the etiology of diseases is to explore the relationships between initiation and progression of diseases and abnormalities in local regions of metabolic pathways. To gain insight into such relationships, we applied the "k-clique" subpathway identification method to all disease-related gene sets. For each disease, the(More)
MOTIVATION The accurate prediction of disease status is a central challenge in clinical cancer research. Microarray-based gene biomarkers have been identified to predict outcome and outperform traditional clinical parameters. However, the robustness of the individual gene biomarkers is questioned because of their little reproducibility between different(More)
Lung cancer, especially non-small cell lung cancer, is a leading cause of malignant tumor death worldwide. Understanding the mechanisms employed by the main regulators, such as microRNAs (miRNAs) and transcription factors (TFs), still remains elusive. The patterns of their cooperation and biological functions in the synergistic regulatory network have(More)
The prognosis of glioma patients is usually poor, especially in patients with glioblastoma (World Health Organization (WHO) grade IV). The regulatory functions of microRNA (miRNA) on genes have important implications in glioma cell survival. However, there are not many studies that have investigated glioma survival by integrating miRNAs and genes while also(More)
A fundamental issue in biology and medicine is illustration of the overall drug impact which is always the consequence of changes in local regions of metabolic pathways (subpathways). To gain insights into the global relationship between drugs and their affected metabolic subpathways, we constructed a drug-metabolic subpathway network (DRSN). This network(More)