Des Raymond Richardson

Learn More
Novel chemotherapeutics with marked and selective antitumor activity are essential to develop, particularly those that can overcome resistance to established therapies. Iron (Fe) is critical for cell-cycle progression and DNA synthesis and potentially represents a novel molecular target for the design of new anticancer agents. The aim of this study was to(More)
Numerous studies have suggested that iron (Fe) chelators such as desferrioxamine (DFO) may be useful antitumor agents (Blatt and Stitely, Cancer Res 47:1749, 1987; Becton and Bryles, Cancer Res 48:7189, 1988). Recent work with several analogues of the lipophilic Fe chelator, pyridoxal isonicotinoyl hydrazone (PIH), indicate that some of these ligands are(More)
Aroylhydrazone and thiosemicarbazone iron (Fe) chelators have potent antitumor activity. The aim of the current study was to examine the antitumor effects and mechanisms of action of a novel series of Fe chelators, the di-2-pyridyl thiosemicarbazones. Of 7 new chelators synthesized, 4 showed pronounced antiproliferative effects. The most active chelator was(More)
Iron uptake by mammalian cells is mediated by the binding of serum Tf to the TfR. Transferrin is then internalized within an endocytotic vesicle by receptor-mediated endocytosis and the Fe released from the protein by a decrease in endosomal pH. Apart from this process, several cell types also have other efficient mechanisms of Fe uptake from Tf that(More)
The evolution of iron chelators from a range of primordial siderophores and aromatic heterocyclic ligands has lead to the formation of a new generation of potent and efficient iron chelators. For example, various siderophore analogs and synthetic ligands, including ICL670A [4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid],(More)
Iron represents a paradox for living systems by being essential for a wide variety of metabolic processes (oxygen transport, electron transport, DNA synthesis, etc) but also having the potential to cause deleterious effects. Because of Iron's virtual insolubility and potential toxicity under physiological conditions, specialized molecules for the(More)
Iron (Fe) is critical for proliferation, but its precise role in cell cycle progression remains unclear. In this study, we examined the mechanisms involved by assessing the effects of Fe chelators on the expression of molecules that play key roles in this process. In initial studies, gene arrays were used to assess gene expression after incubating cells(More)
We have recently screened 36 analogues of the lipophilic iron (Fe) chelator, pyridoxal isonicotinoyl hydrazone (PIH), for their antiproliferative effect (Richardson et al, Blood 86:4295, 1995). Of these compounds, 1 chelator derived from salicylaldehyde benzoyl hydrazone (206) and 4 ligands derived from 2-hydroxy-1-naphthylaldehyde benzoyl hydrazone (308,(More)
SIGNIFICANCE Under normal circumstances, cellular iron levels are tightly regulated due to the potential toxic effects of this metal ion. There is evidence that tumors possess altered iron homeostasis, which is mediated by the perturbed expression of iron-related proteins, for example, transferrin receptor 1, ferritin and ferroportin 1. The de-regulation of(More)
Although anthracyclines such as doxorubicin are widely used antitumor agents, a major limitation for their use is the development of cardiomyopathy at high cumulative doses. This severe adverse side effect may be due to interactions with cellular iron metabolism, because iron loading promotes anthracycline-induced cell damage. On the other hand,(More)