Deryl L. Troyer

Learn More
The umbilical cord contains an inexhaustible, noncontroversial source of stem cells for therapy. In the U.S., stem cells found in the umbilical cord are routinely placed into bio-hazardous waste after birth. Here, stem cells derived from human umbilical cord Wharton's Jelly, called umbilical cord matrix stem (UCMS) cells, are characterized. UCMS cells have(More)
We have identified an easily attainable source of primitive, potentially multipotent stem cells from Wharton's jelly, the matrix of umbilical cord. Wharton's jelly cells have been propagated in culture for more than 80 population doublings. Several markers for stem cells, including c-kit (CD117), and telomerase activity are expressed in these cells.(More)
Cells isolated from Wharton's jelly, referred to as umbilical cord matrix stromal (UCMS) cells, adhere to a tissue-culture plastic substrate, express mesenchymal stromal cell (MSC) surface markers, self-renew, and are multipotent (differentiate into bone, fat, cartilage, etc.) in vitro. These properties support the notion that UCMS cells are a member of the(More)
Here, the literature was reviewed to evaluate whether a population of mesenchymal stromal cells derived from Wharton's jelly cells (WJCs) is a primitive stromal population. A clear case can be made for WJCs as a stromal population since they display the characteristics of MSCs as defined by the International Society for Cellular Therapy; for example, they(More)
BACKGROUND Three transcription factors that are expressed at high levels in embryonic stem cells (ESCs) are Nanog, Oct-4 and Sox-2. These transcription factors regulate the expression of other genes during development and are found at high levels in the pluripotent cells of the inner cell mass. The downregulation of these three transcription factors(More)
Stem cells are the next frontier in medicine. Stem cells are thought to have great therapeutic and biotechnological potential. This will not only to replace damaged or dysfunctional cells, but also rescue them and/or deliver therapeutic proteins after they have been engineered to do so. Currently, ethical and scientific issues surround both embryonic and(More)
Two lambda phage and 66 cosmids containing informative porcine microsatellites were assigned to 17 of 18 porcine autosomes and the X Chromosome (Chr) by fluorescence in situ hybridization (FISH). These assignments provide additional physically anchored markers to integrate the porcine physical and genetic maps.
This study examined the relations of maternal vicarious emotional responding and child-rearing practices, as well as familial emotional environment, to 5-6 and 8-9-year-old children's vicarious emotional responding. There were some correspondences between mothers' and children's heart rate, facial, and self-reported reactions to a sympathy-inducing film.(More)
The first integrated physical and genetic linkage map encompassing the entire swine chromosome 7 (SSC7) reveals that the porcine MHC (SLA) spans the centromere. A SLA class II antigen gene lies on the q arm, whereas class I and III genes lie on the p arm, suggesting that the presence of a centromere within the SLA does not preclude a functional complex. The(More)
Umbilical cord matrix stem (UCMS) cells are unique stem cells derived from Wharton's jelly, which have been shown to express genes characteristic of primitive stem cells. To test the safety of these cells, human UCMS cells were injected both intravenously and subcutaneously in large numbers into severe combined immunodeficiency (SCID) mice and multiple(More)