Learn More
—This paper considers a multiuser multiple-input single-output (MISO) downlink system with simultaneous wireless information and power transfer. In particular, we focus on secure communication in the presence of passive eavesdroppers and potential eavesdroppers (idle legitimate receivers). We study the design of a resource allocation algorithm minimizing(More)
This paper considers orthogonal frequency division multiple access (OFDMA) systems with simultaneous wireless information and power transfer. We study the resource allocation algorithm design for maximization of the energy efficiency of data transmission (bits/Joule delivered to the receivers). In particular, we focus on power splitting hybrid receivers(More)
—In this paper, resource allocation for energy-efficient communication in an orthogonal frequency division multiple access (OFDMA) downlink network with a large number of transmit antennas is studied. The considered problem is modeled as a non-convex optimization problem which takes into account the circuit power consumption, imperfect channel state(More)
Energy harvesting for wireless communication networks is a new paradigm that allows terminals to recharge their batteries from external energy sources in the surrounding environment. A promising energy harvesting technology is wireless power transfer where terminals harvest energy from electromagnetic radiation. Thereby, the energy may be harvested(More)
In this paper, resource allocation for energy efficient communication in multi-cell orthogonal frequency division multiple access (OFDMA) downlink networks with cooperative base stations (BSs) is studied. The considered problem is formulated as a non-convex optimization problem which takes into account the circuit power consumption, the limited backhaul(More)
—In this paper, we study resource allocation for multiuser multiple-input single-output (MISO) secondary communication systems with multiple system design objectives. We consider cognitive radio (CR) networks where the secondary receivers are able to harvest energy from the radio frequency when they are idle. The secondary system provides simultaneous(More)
We study resource allocation algorithm design for energy-efficient communication in an orthogonal frequency division multiple access (OFDMA) downlink network with hybrid energy harvesting base station (BS). Specifically, an energy harvester and a constant energy source driven by a non-renewable resource are used for supplying the energy required for system(More)
—In this paper, resource allocation for energy-efficient secure communication in an orthogonal frequency-division multiple-access (OFDMA) downlink network is studied. The considered problem is modeled as a nonconvex optimization problem that takes into account the sum-rate-dependent circuit power consumption, multiple-antenna eavesdropper, artificial noise(More)
In this paper, we study the resource allocation algorithm design for multiuser orthogonal frequency division multiplexing (OFDM) downlink systems with simultaneous wireless information and power transfer. The algorithm design is formulated as a non-convex optimization problem for maximizing the energy efficiency of data transmission (bit/Joule delivered to(More)
Simultaneous wireless information and power transfer (SWIPT) is a promising solution to increase the lifetime of wireless nodes and hence alleviate the energy bottleneck of energy constrained wireless networks. As an alternative to conventional energy harvesting techniques, SWIPT relies on the use of radio frequency signals, and is expected to bring some(More)