Learn More
A third-generation synchrotron radiation source provides enough brilliance to acquire complete tomographic data sets at 100 nm or better resolution in a few minutes. To take advantage of such high-brilliance sources at the Advanced Photon Source, we have constructed a pipelined data acquisition and reconstruction system that combines a fast detector system,(More)
Soft-polymer based microparticles are currently being applied in many biomedical applications, ranging from bioimaging and bioassays to drug delivery carriers. As one class of soft-polymers, hydrogels are materials, which can be used for delivering drug cargoes and can be fabricated in controlled sizes. Among the various hydrogel-forming polymers,(More)
The fracture strength of ultrananocrystalline diamond ͑UNCD͒ has been investigated using tensile testing of freestanding submicron films. Specifically, the fracture strength of UNCD membranes, grown by microwave plasma chemical vapor deposition ͑MPCVD͒, was measured using the membrane deflection experiment developed by Espinosa and co-workers. The data show(More)
Mammography arguably demands the highest fidelity of all x-ray imaging applications, with simultaneous requirements of exceedingly high spatial and contrast resolution. Continuing technical improvements of screen-film and digital mammography systems have led to substantial improvements in image quality, and therefore improvements in the performance of(More)
Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in "diffract-and-destroy" mode. We determined a(More)
A measurement of the horizontal coherence function of 7.9 keV radiation from an undulator beam line at the Advanced Photon Source is reported. X-ray diffraction from a phase-shifting mask was used, and the coherence function was measured as a function of the width of beam-conditioning slits in the beam line. The coherence distribution is found to be best(More)
Highly luminescent semiconductor quantum dots have been synthesized in porous materials with ultraviolet and x-ray lithography. For this, the pore-filling solvent of silica hydrogels is exchanged with an aqueous solution of a group II metal ion together with a chalcogenide precursor such as 2-mercaptoethanol, thioacetamide or selenourea. The chalcogenide(More)
Conventional x-ray diffraction topography is currently used to map defects in the bulk of protein crystals, but the lack of sufficient contrast is frequently a limiting factor. We experimentally demonstrate that this barrier can be circumvented using a method that combines phase sensitive and diffraction imaging principles. Details of defects revealed in(More)
Conformational transitions in thermo-sensitive polymers are critical in determining their functional properties. The atomistic origin of polymer collapse at the lower critical solution temperature (LCST) remains a fundamental and challenging problem in polymer science. Here, molecular dynamics simulations are used to establish the role of solvation dynamics(More)
The vibrational spectrum of water near a thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAM) undergoing conformational transition through the lower critical solution temperature (LCST) is calculated using molecular dynamics simulations. The characteristic structural features observed at the atomic scale for these proximal water molecules in a(More)