Learn More
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are(More)
A recently identified variant within the fat mass and obesity-associated (FTO) gene is carried by 46% of Western Europeans and is associated with an approximately 1.2 kg higher weight, on average, in adults and an approximately 1 cm greater waist circumference. With >1 billion overweight and 300 million obese persons worldwide, it is crucial to understand(More)
The quest to identify genes that influence disease is now being extended to find genes that affect biological markers of disease, or endophenotypes. Brain images, in particular, provide exquisitely detailed measures of anatomy, function, and connectivity in the living brain, and have identified characteristic features for many neurological and psychiatric(More)
Imaging traits are thought to have more direct links to genetic variation than diagnostic measures based on cognitive or clinical assessments and provide a powerful substrate to examine the influence of genetics on human brains. Although imaging genetics has attracted growing attention and interest, most brain-wide genome-wide association studies focus on(More)
The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging(More)
In a genome-wide association study of structural brain degeneration, we mapped the 3D profile of temporal lobe volume differences in 742 brain MRI scans of Alzheimer's disease patients, mildly impaired, and healthy elderly subjects. After searching 546,314 genomic markers, 2 single nucleotide polymorphisms (SNPs) were associated with bilateral temporal lobe(More)
Imaging traits provide a powerful and biologically relevant substrate to examine the influence of genetics on the brain. Interest in genome-wide, brain-wide search for influential genetic variants is growing, but has mainly focused on univariate, SNP-based association tests. Moving to gene-based multivariate statistics, we can test the combined effect of(More)
Various neuroimaging measures are being evaluated for tracking Alzheimer's disease (AD) progression in therapeutic trials, including measures of structural brain change based on repeated scanning of patients with magnetic resonance imaging (MRI). Methods to compute brain change must be robust to scan quality. Biases may arise if any scans are thrown out, as(More)
Penalized or sparse regression methods are gaining increasing attention in imaging genomics, as they can select optimal regressors from a large set of predictors whose individual effects are small or mostly zero. We applied a multivariate approach, based on L(1)-L(2)-regularized regression (elastic net) to predict a magnetic resonance imaging (MRI)(More)
In imaging genomics, there have been rapid advances in genome-wide, image-wide searches for genes that influence brain structure. Most efforts focus on univariate tests that treat each genetic variation independently, ignoring the joint effects of multiple variants. Instead, we present a gene-based method to detect the joint effect of multiple single(More)