Learn More
The development and evaluation of time-resolved (minutes) measurement technologies to characterize the physical and chemical make up of ambient aerosols/particulate matter in the atmosphere are essential to our improved understanding of aerosol process science, source attribution, and population exposure. During the PMTACS-NY summer 2001 campaign in(More)
Textile-based sensors offer an unobtrusive method of continually monitoring physiological parameters during daily activities. Chemical analysis of body fluids, noninvasively, is a novel and exciting area of personalized wearable healthcare systems. BIOTEX was an EU-funded project that aimed to develop textile sensors to measure physiological parameters and(More)
Observation of a patient's respiration signal can provide a clinician with the required information necessary to analyse a subject's wellbeing. Due to an increase in population number and the aging population demographic there is an increasing stress being placed on current healthcare systems. There is therefore a requirement for more of the rudimentary(More)
The implementation of the Water Framework Directive (WFD) across the EU, and the growing international emphasis on the management of water quality is giving rise to an expanding market for novel, miniaturized, intelligent monitoring systems for freshwater catchments, transitional and coastal waters. This paper describes the "SmartCoast" multi sensor system(More)
Background: This paper provides an overview of initial research conducted in the development of pressure-sensitive foam and its application in wearable sensing. The foam sensor is composed of polypyrrole-coated polyurethane foam, which exhibits a piezo-resistive reaction when exposed to electrical current. The use of this polymer-coated foam is attractive(More)
There is a need for wearable sensors to assess physiological signals and body kinematics during exercise. Such sensors need to be straightforward to use, and ideally the complete system integrated fully within a garment. This would allow wearers to monitor their progress as they undergo an exercise training programme without the need to attach external(More)
Breathing exercises form an essential part of the treatment for respiratory illnesses such as cystic fibrosis. Ideally these exercises should be performed on a daily basis. This paper presents an interactive system using a wearable textile sensor to monitor breathing patterns. A graphical user interface provides visual real-time feedback to patients. The(More)
— We present work on the development and testing of a low-cost wireless chemical sensor network (WCSN) for monitoring irritant/toxic gases in the environment. The WCSN used in this work takes advantage of recent advances in low power wireless communication platforms and uses colorimetric sensors to detect the presence of certain target gases. This sensor(More)
Wearable technology is omnipresent to the user. Thus, it has the potential to be significantly disruptive to the user's daily life. Context awareness and intuitive device interfaces can help to minimize this disruption, but only when the sensing technology itself is not physically intrusive: i.e., when the interface preserves the user's homeostatic comfort.(More)
A disco photometer which was an optical sensing array based on multiple LEDs was constructed for colorimetric analysis. This approach has been used to analyse single dyes and dye mixtures containing up to three dye components. This technique made use of the inherent well-defined LED emission band roprovide selectivity for chromophors, which have equally(More)