Derek T Chalmers

Learn More
Corticotropin-releasing factor (CRF) is the primary factor involved in controlling the release of ACTH from the anterior pituitary and also acts as a neurotransmitter in a variety of brain systems. The actions of CRF are mediated by G-protein coupled membrane bound receptors and a high affinity CRF receptor, CRF1, has been previously cloned and functionally(More)
The present study reports the isolation of a cDNA clone that encodes a second member of the corticotropin-releasing factor (CRF) receptor family, designated as the CRF2 receptor. The cDNA was identified using oligonucleotides of degenerate sequence in a PCR paradigm. A PCR fragment obtained from rat brain was utilized to isolate a full-length cDNA from a(More)
5-Hydroxytryptamine (5-HT)(2C) receptor agonists hold promise for the treatment of obesity. In this study, we describe the in vitro and in vivo characteristics of lorcaserin [(1R)-8-chloro-2,3,4,5-tetrahydro-1-methyl-1H-3 benzazepine], a selective, high affinity 5-HT(2C) full agonist. Lorcaserin bound to human and rat 5-HT(2C) receptors with high affinity(More)
BACKGROUND Disturbances of the limbic-hypothalamic-pituitary-adrenal axis and the serotonin system are commonly found in depressive illness. Studying the effect of stress on these two neurobiological systems may give us important clues into the pathophysiology of affective illness and help us understand how stress and mood disorders are related. METHODS(More)
We have recently described the cloning and characterization of a novel corticotropin-releasing factor receptor subtype (CRF2) from rat brain that exists in two alternatively spliced forms, CRF2 alpha and CRF2 beta. These forms differ in their N-terminal coding sequence which results in the production of two distinct receptors of 411 and 431 amino acids,(More)
The present study examined the comparative distribution of 5-HT1A receptor mRNA and 5-HT1A receptors in rat brain using a combination of in situ hybridisation histochemistry and in vitro receptor autoradiography. 5-HT1A mRNA was visualized using a 910 bp cRNA probe synthesised from a BalI-PvuII fragment of the rat 5-HT1A reetor gene, while 5-HT1A receptors(More)
Corticotrophin-releasing factor (CRF) acts within both the brain and the periphery to coordinate the overall response of the body to stress. The involvement of the CRF systems in a variety of both CNS and peripheral disease states has stimulated great interest in this peptide as a potential site of therapeutic intervention. The recent cloning of multiple(More)
The actions of CRF in the brain and in the periphery are mediated through multiple binding sites. There are three receptors, CRF1, CRF2 alpha and CRF2 beta, which encode 411, 415 and 431 amino acid proteins and transduce signals via the stimulation of intracellular cAMP production. The recent identification of high-affinity non-peptide CRF receptor(More)
The G-protein-coupled receptor (GPCR) family mediates a host of cell-cell communications upon activation by diverse ligands. Numerous GPCRs have been shown to display anatomically selective patterns of gene expression, however, our understanding of the complexity of GPCR signaling within human tissues remains unclear. In an effort to characterize global(More)
Using in situ hybridization techniques, the expression of 5-HT1A receptor mRNA was measured within the hippocampal formation after bilateral adrenalectomy (ADX). After 24 hr ADX, 5-HT1A receptor mRNA expression was significantly increased in all hippocampal subfields in ADX animals relative to sham-operated controls (SHAM). The magnitude of the increase was(More)