Learn More
Changes in skeletal muscle volume induce localized sarcoplasmic reticulum (SR) Ca(2+) release (LCR) events, which are sustained for many minutes, suggesting a possible signaling role in plasticity or pathology. However, the mechanism by which cell volume influences SR Ca(2+) release is uncertain. In the present study, rat flexor digitorum brevis fibers were(More)
Previous studies have used analysis of Ca(2+) sparks extensively to investigate both normal and pathological Ca(2+) regulation in cardiac myocytes. The great majority of these studies used line-scan confocal imaging. In part, this is because the development of open-source software for automatic detection of Ca(2+) sparks in line-scan images has greatly(More)
1. The effects of cytosolic ATP on sarcoplasmic reticulum (SR) Ca2+ regulation were investigated in saponin-permeabilised rat ventricular myocytes. [Ca2+] within the cells was monitored using Fura-2 or Fluo-3 fluorescence. Spontaneous cyclic Ca2+ release from the SR was induced by increasing the bathing [Ca2+] to 200-300 nM, in solutions weakly Ca2+(More)
1. Caffeine (10 mM) induced a transient contracture in saponin-treated cardiac trabeculae as a result of Ca2+ release from the sarcoplasmic reticulum (SR). Regular cycles of uptake and release were repeated to stabilize responses. The SR accumulated Ca2+ during the period prior to the addition of caffeine and this was reflected in the size of the caffeine(More)
AIM Skeletal muscle fatigue is characterized by a failure to maintain force production or power output during intense exercise. Many recent studies on isolated fibres have used brief repetitive tetanic contractions to mimic fatigue resulting from intensive exercise and to investigate the underlying cellular mechanisms. Such studies have shown that(More)
Confocal microscopy was used to study the properties of nuclear Ca2+ regulation in adult ventricular myocytes. Prolonged nuclear Ca2+ release (PNCR) events were identified in both intact and permeabilized rat myocytes. PNCR occurred spontaneously and was restricted to localized regions at the ends of the elongated nuclei. Typically, PNCR took the form of a(More)
Carbon monoxide (CO) is firmly established as an important, physiological signalling molecule as well as a potent toxin. Through its ability to bind metal-containing proteins, it is known to interfere with a number of intracellular signalling pathways, and such actions can account for its physiological and pathological effects. In particular, CO can(More)
Sublethal carbon monoxide (CO) exposure is frequently associated with myocardial arrhythmias, and our recent studies have demonstrated that these may be attributable to modulation of cardiac Na(+) channels, causing an increase in the late current and an inhibition of the peak current. Using a recombinant expression system, we demonstrate that CO inhibits(More)
The effects of the sarcoplasmic reticulum (SR) Ca2+ pump inhibitor cyclopiazonic acid (CPA) were studied in saponin-permeabilized frog skeletal muscle fibres. Release of Ca2+ from the SR was triggered by brief (2 s) applications of 40 mM caffeine at 2-min intervals. Changes in [Ca2+] within the fibre were monitored continuously using Fura-2 fluorescence. At(More)