Learn More
Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing the rhizosphere (immediately surrounding the root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation. Colonization of the root(More)
We describe improvements for sequencing 16S ribosomal RNA (rRNA) amplicons, a cornerstone technique in metagenomics. Through unique tagging of template molecules before PCR, amplicon sequences can be mapped to their original templates to correct amplification bias and sequencing error with software we provide. PCR clamps block amplification of contaminating(More)
Immune systems distinguish "self" from "nonself" to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana(More)
Plant phenology is known to depend on many different environmental variables, but soil microbial communities have rarely been acknowledged as possible drivers of flowering time. Here, we tested separately the effects of four naturally occurring soil microbiomes and their constituent soil chemistries on flowering phenology and reproductive fitness of(More)
Pseudomonas syringae strains deliver diverse type III effector proteins into host cells, where they can act as virulence factors. Although the functions of the majority of type III effectors are unknown, several have been shown to interfere with plant basal defense mechanisms. Type III effectors also could contribute to bacterial virulence by enhancing(More)
Single amplified genomes and genomes assembled from metagenomes have enabled the exploration of uncultured microorganisms at an unprecedented scale. However, both these types of products are plagued by contamination. Since these genomes are now being generated in a high-throughput manner and sequences from them are propagating into public databases to drive(More)
To assess the impacts of soil microbes and plant genotype on the composition of maize associated bacterial communities. Two genotypes of Brazilian maize were planted indoors on sterile sand, a deep underground subsoil, and a nutrient-rich topsoil from the Amazon jungle (terra preta). DNA was extracted from rhizospheres, phyllospheres, and surface sterilized(More)
Many microbes associate with higher eukaryotes and impact their vitality. To engineer microbiomes for host benefit, we must understand the rules of community assembly and maintenance that, in large part, demand an understanding of the direct interactions among community members. Toward this end, we have developed a Poisson-multivariate normal hierarchical(More)
Short oligonucleotides can be used as markers to tag and track DNA sequences. For example, barcoding techniques (i.e. Multiplex Identifiers or Indexing) use short oligonucleotides to distinguish between reads from different DNA samples pooled for high-throughput sequencing. A similar technique called molecule tagging uses the same principles but is applied(More)
Bacteria living on and in leaves and roots influence many aspects of plant health, so the extent of a plant's genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. Laboratory-based studies, because they poorly simulate true environmental heterogeneity, may misestimate or totally miss the influence of certain(More)