Derek P. G. Norman

Learn More
Spontaneous oxidation of guanine residues in DNA generates 8-oxoguanine (oxoG). By mispairing with adenine during replication, oxoG gives rise to a G x C --> T x A transversion, a frequent somatic mutation in human cancers. The dedicated repair pathway for oxoG centres on 8-oxoguanine DNA glycosylase (hOGG1), an enzyme that recognizes oxoG x C base pairs,(More)
The transcriptional activity of many sequence-specific DNA binding proteins is directly regulated by posttranslational covalent modification. Although this form of regulation was first described nearly two decades ago, it remains poorly understood at a mechanistic level. The prototype for a transcription factor controlled by posttranslational modification(More)
Steroid hormones can act as chemical messengers in a wide range of species and target tissues to produce both slow genomic responses, and rapid non-genomic responses. Although it is clear that genomic responses to steroid hormones are mediated by the formation of a complex of the hormone and its cognate steroid-hormone nuclear receptor, new evidence(More)
Members of the HhH-GPD superfamily of DNA glycosylases are responsible for the recognition and removal of damaged nucleobases from DNA. The hallmark of these proteins is a motif comprising a helix-hairpin-helix followed by a Gly/Pro-rich loop and terminating in an invariant, catalytically essential aspartic acid residue. In this study, we have probed the(More)
High-resolution structural studies of protein-DNA complexes have proven to be an invaluable means of understanding the diverse functions of proteins that manage the genome. Most of the structures determined to date represent proteins bound noncovalently to various DNA sequences or structures. Although noncovalent complexation is often adequate to study the(More)
  • 1