Learn More
The voltage-gated sodium channel NaV1.8 (SNS, PN3) is thought to be a molecular correlate of the dorsal root ganglion (DRG) tetrodotoxin resistant (TTX-R) Na+ current. TTX-R/NaV1.8 is an attractive therapeutic drug target for inflammatory and neuropathic pain on the basis of its specific distribution in sensory neurones and its modulation by inflammatory(More)
We investigated the role of small-conductance calcium-activated potassium (SK) and intermediate-conductance calcium-activated potassium channels in modulating sensory transmission from peripheral afferents into the rat spinal cord. Subunit-specific antibodies reveal high levels of SK3 immunoreactivity in laminas I, II, and III of the spinal cord. Among(More)
Proteins of the CLCA gene family including the human ClCa1 (hClCa1) have been suggested to constitute a new family of chloride channels mediating Ca(2+)-dependent Cl- currents. The present study examines the relationship between the hClCa1 protein and Ca(2+)-dependent Cl- currents using heterologous expression of hClCa1 in HEK293 and NCIH522 cell lines and(More)
The antagonist properties of pyridoxal-5-phosphate, a synthesis precursor of pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, were investigated on P2 purinoceptor-mediated responses of the rat isolated vagus nerve and vas deferens. In addition, the effect of this agent was studied on high affinity tritiated alpha,beta-methylene adenosine triphosphate(More)
The effects of the putative selective P2X purinoceptor agonist, beta,gamma-methylene-L-adenosine 5'-triphosphate (beta gamma me-L-ATP), were determined at rat neuronal and smooth muscle P2X purinoceptors. beta gamma Me-L-ATP had no effect on the extracellularly recorded membrane potential of the rat isolated vagus nerve preparation at concentrations up to(More)
1. We have previously found that the P2x-purinoceptor agonist, alpha, beta-methylene adenosine 5'-triphosphate (alpha, beta-methylene ATP), depolarizes the rat cervical vagus nerve, measured with a 'grease-gap' extracellular recording technique. This effect was attenuated by the P2 purinoceptor antagonist, suramin. In the present study we have investigated(More)
The role of calcium-activated potassium channels in the regulation of neuronal hyperexcitability, as in epilepsy, is unclear. To examine this issue, we have used the acute hippocampal slice model of epileptiform activity to investigate the effects of an enhancer of SK channel activity, 1-ethyl-benzimidazolinone (EBIO). That EBIO is an SK channel modulator(More)
To address the throughput restrictions of classical patch clamp electrophysiology, Essen Instruments has developed a plate-based electrophysiology measurement platform. The instrument is an integrated platform that consists of computer-controlled fluid handling, recording electronics, and processing tools capable of voltage clamp whole-cell recordings from(More)
Calcium-activated potassium ion channels SK and IK (small and intermediate conductance, respectively) may be important in the pathophysiology of pain following nerve injury, as SK channels are known to impose a period of reduced excitability after each action potential by afterhyperpolarization. We studied the presence and changes of human SK1 (hSK1)- and(More)