Learn More
Over 1000 genetically linked RFLP loci in Brassica napus were mapped to homologous positions in the Arabidopsis genome on the basis of sequence similarity. Blocks of genetically linked loci in B. napus frequently corresponded to physically linked markers in Arabidopsis. This comparative analysis allowed the identification of a minimum of 21 conserved(More)
BACKGROUND The large number of genetic linkage maps representing Brassica chromosomes constitute a potential platform for studying crop traits and genome evolution within Brassicaceae. However, the alignment of existing maps remains a major challenge. The integration of these genetic maps will enhance genetic resolution, and provide a means to navigate(More)
A genetic linkage map consisting of 399 RFLP-defined loci was generated from a cross between resynthesized Brassica napus (an interspecific B. rapa x B. oleracea hybrid) and "natural" oilseed rape. The majority of loci exhibited disomic inheritance of parental alleles demonstrating that B. rapa chromosomes were each pairing exclusively with recognisable(More)
The major difference between annual and biennial cultivars of oilseed Brassica napus and B. rapa is conferred by genes controlling vernalization-responsive flowering time. These genes were compared between the species by aligning the map positions of flowering time quantitative trait loci (QTLs) detected in a segregating population of each species. The(More)
We describe the construction of a reference genetic linkage map for the Brassica A genome, which will form the backbone for anchoring sequence contigs for the Multinational Brassica rapa Genome Sequencing Project. Seventy-eight doubled haploid lines derived from anther culture of the F(1) of a cross between two diverse Chinese cabbage (B. rapa ssp.(More)
A Brassica nigra genetic linkage map was developed from a highly polymorphic cross analyzed with a set of low copy number Brassica RFLP probes. The Brassica genome is extensively duplicated with eight distinct sets of chromosomal segments, each present in three copies, covering virtually the whole genome. Thus, B. nigra could be descended from a hexaploid(More)
Arabidopsis thaliana (the model dicotyledonous plant) is closely related to Brassica crop species. Genome collinearity, or conservation of marker order, between Brassica napus (oilseed rape) and A. thaliana was assessed over a 7.5-Mbp region of the long arm of A. thaliana chromosome 4, equivalent to 30 cM. Estimates of copy number indicated that sequences(More)
The progenitor diploid genomes (A and C) of the amphidiploid Brassica napus are extensively duplicated with 73% of genomic clones detecting two or more duplicate sequences within each of the diploid genomes. This comprehensive duplication of loci is to be expected in a species that has evolved through a polyploid ancestor. The majority of the duplicate loci(More)
LepR3, found in the Brassica napus cv 'Surpass 400', provides race-specific resistance to the fungal pathogen Leptosphaeria maculans, which was overcome after great devastation in Australia in 2004. We investigated the LepR3 locus to identify the genetic basis of this resistance interaction. We employed a map-based cloning strategy, exploiting collinearity(More)
The model dicotyledonous plant, Arabidopsis thaliana, is closely related to Brassica crop species. It is intended that information concerning the genetic control of basic biological processes in Arabidopsis will be transferable to other species. Genome collinearity and its potential to facilitate the identification of candidate genes in Arabidopsis(More)