Derek Hoi-Hang Ho

  • Citations Per Year
Learn More
Human coagulation factor XI (FXI) is a plasma serine protease composed of 2 identical 80-kd polypeptides connected by a disulfide bond. This dimeric structure is unique among blood coagulation enzymes. The hypothesis was tested that dimeric conformation is required for normal FXI function by generating a monomeric version of FXI (FXI/PKA4) and comparing it(More)
Previously we defined binding sites for high molecular weight kininogen (HK) and thrombin in the Apple 1 (A1) domain of factor XI (FXI). Since prothrombin (and Ca(2+)) can bind FXI and can substitute for HK (and Zn(2+)) as a cofactor for FXI binding to platelets, we have attempted to identify a prothrombin-binding site in FXI. The recombinant A1 domain(More)
We have reported that prothrombin (1 microm) is able to replace high molecular weight kininogen (45 nm) as a cofactor for the specific binding of factor XI to the platelet (Baglia, F. A., and Walsh, P. N. (1998) Biochemistry 37, 2271-2281). We have also determined that prothrombin fragment 2 binds to the Apple 1 domain of factor XI at or near the site where(More)
To localize the platelet binding site on factor XI, rationally designed, conformationally constrained synthetic peptides were used to compete with [(125)I]factor XI binding to activated platelets. The major platelet binding energy resided within the sequence of amino acids T(249)-F(260). Homology scanning, using prekallikrein amino acid substitutions within(More)
Since heparin potentiates activated factor XI (FXIa) inhibition by protease nexin-2 by providing a template to which both proteins bind (Zhang, Y., Scandura, J. M., Van Nostrand, W. E., and Walsh, P. N. (1997) J. Biol. Chem. 272, 26139-26144), we examined binding of factor XI (FXI) and FXIa to heparin. FXIa binds to heparin (Kd approximately 0.7 x 10(-9) M)(More)
Peroxynitrite (ONOO(-)), the product of a radical combination reaction of nitric oxide and superoxide, is a potent biological oxidant involved in a broad spectrum of physiological and pathological processes. Herein we report the development, characterization, and biological applications of a new fluorescent probe, HKGreen-4, for peroxynitrite detection and(More)
  • 1