Derek Hausenloy

Learn More
BACKGROUND Whether alterations in mitochondrial morphology affect the susceptibility of the heart to ischemia/reperfusion injury is unknown. We hypothesized that modulating mitochondrial morphology protects the heart against ischemia/reperfusion injury. METHODS AND RESULTS In response to ischemia, mitochondria in HL-1 cells (a cardiac-derived cell line)(More)
Reperfusion is a pre-requisite to salvaging viable myocardium, following an acute myocardial infarction. Reperfusion of ischaemic myocardium, however, is not without risk, as the act of reperfusion itself can paradoxically result in myocyte death: a phenomenon termed lethal reperfusion-induced injury. Therapeutic strategies that target and attenuate(More)
BACKGROUND Whether remote ischaemic preconditioning, an intervention in which brief ischaemia of one tissue or organ protects remote organs from a sustained episode of ischaemia, is beneficial for patients undergoing coronary artery bypass graft surgery is unknown. We did a single-blinded randomised controlled study to establish whether remote ischaemic(More)
OBJECTIVE We propose that ischemic preconditioning (IPC) and mitochondrial K(ATP) channel activation protect the myocardium by inhibiting mitochondrial permeability transition pore (MPTP) opening at reperfusion. METHODS Isolated rat hearts were subjected to 35 min ischemia/120 min reperfusion and assigned to the following groups: (1) control; (2) IPC of(More)
Despite nearly twenty years of research into the field of ischemic preconditioning, the actual mechanism of protection remains unclear. However, much progress has been made in elucidating the signal transduction pathways that convey the extracellular signal initiated by the preconditioning stimulus to the intracellular targets of cardioprotection, with many(More)
Brief intermittent episodes of ischemia and reperfusion, at the onset of reperfusion after a prolonged period of ischemia, confer cardioprotection, a phenomenon termed "ischemic postconditioning" (Postcond). We hypothesized that this phenomenon may just represent a modified form of reperfusion that activates the reperfusion injury salvage kinase (RISK)(More)
Acute myocardial infarction (MI) is a major cause of death and disability worldwide. In patients with MI, the treatment of choice for reducing acute myocardial ischemic injury and limiting MI size is timely and effective myocardial reperfusion using either thombolytic therapy or primary percutaneous coronary intervention (PPCI). However, the process of(More)
Pharmacological activation of the prosurvival kinases Akt and ERK-1/2 at reperfusion, after a period of lethal ischemia, protects the heart against ischemia-reperfusion injury. We hypothesized that ischemic preconditioning (IPC) protects the heart by phosphorylating the prosurvival kinases Akt and ERK-1/2 at reperfusion. In isolated perfused Sprague-Dawley(More)
Remote ischaemic preconditioning (RIPC) represents a strategy for harnessing the body's endogenous protective capabilities against the injury incurred by ischaemia and reperfusion. It describes the intriguing phenomenon in which transient non-lethal ischaemia and reperfusion of one organ or tissue confers resistance to a subsequent episode of lethal(More)