Learn More
To cope with explosive traffic demands on current cellular networks of limited capacity, Disruption Tolerant Networking (DTN) is used to offload traffic from cellular networks to high capacity and free device-to-device networks. Current DTN-based mobile data offloading models are based on simple and unrealistic network assumptions which do not take into(More)
To cope with the explosive traffic demands and limited capacity provided by the current cellular networks, Delay Tolerant Networking (DTN) is used to migrate traffic from the cellular networks to the free and high capacity device-to-device networks. The current DTN-based mobile data offloading models do not address the heterogeneity of mobile traffic and(More)
With the rapid growth of the demands for mobile data, wireless network faces several challenges, such as lack of efficient interconnection among heterogeneous wireless networks, and shortage of customized QoS guarantees between services. The fundamental reason for these challenges is that the radio access network (RAN) is closed and ossified. We propose(More)
With the emergence of ever-growing advanced vehicular applications, the challenges to meet the demands from both communication and computation are increasingly prominent. Without powerful communication and computational support, various vehicular applications and services will still stay in the concept phase and cannot be put into practice in the daily(More)
Understanding mobile traffic patterns of large scale cellular towers in urban environment is extremely valuable for Internet service providers, mobile users, and government managers of modern metropolis. This paper aims at extracting and modeling the traffic patterns of large scale towers deployed in a metropolitan city. To achieve this goal, we need to(More)