Deokiee Chon

Learn More
RATIONALE AND OBJECTIVES Efforts to establish a quantitative approach to the computed tomography (CT)-based character ization of the lung parenchyma in interstitial lung disease (including emphysema) has been sought. The accuracy of these tools must be site independent. Multi-detector row CT has remained the gold standard for imaging the lung, and it(More)
UNLABELLED Xenon-enhanced computed tomography (Xe-CT) has been used to measure regional ventilation by determining the wash-in (WI) and wash-out (WO) rates of stable Xe. We tested the common assumption that WI and WO rates are equal by measuring WO-WI in different anatomic lung regions of six anesthetized, supine sheep scanned using multi-detector-row(More)
RATIONALE AND OBJECTIVES To evaluate the adequacy of multibreath and single-breath stable xenon gas techniques to measure regional ventilation during cardiac-gated, high-speed, multisection imaging, the authors carried out a series of studies using electron-beam computed tomography (CT) and a recently introduced subsecond multisection spiral CT scanner. (More)
With the emergence of multidetector-row computed tomography (CT) it is now possible to image both structure and function via use of a single imaging modality. Breath-hold spiral CT provides detail of the airway and vascular trees along with texture reflective of the state of the lung parenchyma. Use of stable xenon gas wash-in and/or wash-out methods using(More)
Respiratory research with mice using micro-computed tomography (micro-CT) has been predominantly hindered by the limited resolution and signal-to-noise ratio (SNR) as a result of respiratory motion artefacts. In this study, we develop a novel technique for capturing the lung microstructure in vivo using micro-CT, through a computer-controlled intermittent(More)
Computer tomography (CT) imaging techniques permit the noninvasive measurement of regional lung function. Regional specific volume change (sVol), determined from the change in lung density over a tidal breath, should correlate with regional ventilation and regional lung expansion measured with other techniques. sVol was validated against xenon(More)
Xenon computed tomography (Xe-CT) is used to estimate regional ventilation by measuring regional attenuation changes over multiple breaths while rebreathing a constant Xe concentration ([Xe]). Xe-CT has potential human applications, although anesthetic properties limit [Xe] to <or=35%. We investigate effects of lower [Xe], including a low [Xe]-krypton (Kr)(More)
To determine regional pulmonary microvascular mean transit times (MTTs), we used electrocardiogram-gated X-ray computed tomographic imaging to follow bolus radiopaque contrast material through the lungs in anesthetized animals (7 dogs and 1 pig, prone and supine). By deconvolution/reconvolution of regional time-attenuation curves obtained from parenchyma(More)
ECG-triggered computed tomography (CT) was used during passage of iodinated contrast to determine regional pulmonary blood flow (PBF) in anesthetized prone/supine dogs. PBF was evaluated as a function of height within the lung (supine and prone) as a function of various normalization methods: raw unit volume data (PBFraw) or PBF normalized to regional(More)
RATIONALE AND OBJECTIVES The study's aim is to establish lung-imaging methods that provide for the ability to image the lung under dynamic non-breath hold conditions while providing "virtual breath hold" quantifiable volumetric image data sets. Static breath hold images are used as the gold standard for evaluating these virtual breath hold images in both a(More)