Denys Makarov

Learn More
The 60-GHz band of 16 O 2 was studied at room temperature and at low (up to 4 Torr) and atmospheric pressures. Precision measurement of central frequencies, self-broadening, and N 2-broadening parameters of fine-structure transitions up to N = 27 was performed by use of a spectrometer with radio-acoustic detection (RAD). The measured parameters are compared(More)
A review of present and future on-chip rolled-up devices, which can be used to develop lab-in-a-tube total analysis systems, is presented. Lab-in-a-tube is the integration of numerous rolled-up components into a single device constituting a microsystem of hundreds/thousands of independent units on a chip, each individually capable of sorting, detecting and(More)
We report the formation of stable two-dimensional clusters consisting of long-range-interacting colloidal particles with predefined magnetic moments. The symmetry and arrangement of the particles within the cluster are imposed by the magnetic frustration. By satisfying the criteria of stability, a series of magic number clusters is formed. The magic(More)
We realize a magnetoresistive emulsion analyzer capable of detection, multiparametric analysis and sorting of ferrofluid-containing nanoliter-droplets. The operation of the device in a cytometric mode provides high throughput and quantitative information about the dimensions and magnetic content of the emulsion. Our method offers important complementarity(More)
We present a conceptually new approach for the detection of magnetic objects flowing through a fluidic channel. We produce an elastic and stretchable magnetic sensor and wrap it around capillary tubing. Thus, the stray fields induced by the flowing magnetic objects can be detected virtually in all directions (isotropic sensitivity), which is unique for(More)
We present a concept of multidimensional magnetic and optical barcoding of droplets based on a magnetofluidic platform. The platform comprises multiple functional areas, such as an encoding area, an encoded droplet pool and a magnetic decoding area with integrated giant magnetoresistive (GMR) sensors. To prove this concept, penicillin functionalized with(More)
Increasing performance and enabling novel functionalities of microelectronic devices, such as three-dimensional (3D) on-chip architectures in optics, electronics, and magnetics, calls for new approaches in both fabrication and characterization. Up to now, 3D magnetic architectures had mainly been studied by integral means without providing insight into(More)
Highly flexible bismuth Hall sensors on polymeric foils are fabricated, and the key optimization steps that are required to boost their sensitivity to the bulk value are identified. The sensor can be bent around the wrist or positioned on the finger to realize an interactive pointing device for wearable electronics. Furthermore, this technology is of great(More)
A novel fabrication method for stretchable magnetoresistive sensors is introduced, which allows the transfer of a complex microsensor systems prepared on common rigid donor substrates to prestretched elastomeric membranes in a single step. This direct transfer printing method boosts the fabrication potential of stretchable magnetoelectronics in terms of(More)
The 60-GHz band of atmospheric oxygen was studied in the temperature range of À 281 to þ 60 1C at atmospheric pressure by means of a resonator spectrometer with absorption-variation sensitivity of 0.002 dB/km. The experimental data obtained have sufficient signal-to-noise ratio to take second-order mixing into account, increasing the accuracy of the(More)