Learn More
The deposition of Co/Pd multilayer films onto self-assembled particle arrays with particle sizes down to 50 nm leads to pronounced curvature-induced physical properties. Unlike in classical nanosystems, the so-formed single caps on top of the spherical particles exhibit a radial symmetric anisotropy orientation across their surface. Its impact on the(More)
We fabricated self-powered colloidal Janus motors combining catalytic and magnetic cap structures, and demonstrated their performance for manipulation (uploading, transportation, delivery) and sorting of microobjects on microfluidic chips. The specific magnetic properties of the Janus motors are provided by ultrathin multilayer films that are designed to(More)
A review of present and future on-chip rolled-up devices, which can be used to develop lab-in-a-tube total analysis systems, is presented. Lab-in-a-tube is the integration of numerous rolled-up components into a single device constituting a microsystem of hundreds/thousands of independent units on a chip, each individually capable of sorting, detecting and(More)
We report the formation of stable two-dimensional clusters consisting of long-range-interacting colloidal particles with predefined magnetic moments. The symmetry and arrangement of the particles within the cluster are imposed by the magnetic frustration. By satisfying the criteria of stability, a series of magic number clusters is formed. The magic(More)
Detection and analysis of magnetic nanoobjects is a crucial task in modern diagnostic and therapeutic techniques applied to medicine and biology. Accomplishment of this task calls for the development and implementation of electronic elements directly in fluidic channels, which still remains an open and nontrivial issue. Here, we present a novel concept(More)
The first printable magnetic sensor relying on the giant magnetoresistance effect (GMR) is demonstrated. It is prepared in the form of magneto-sensitive inks adherent to any kind of arbitrarily shaped surface. The fabricated sensor exhibits a room-temperature GMR of up to 8% showing great potential for contactless switching in hybrid electronic circuits(More)
Smart biomimetics, a unique class of devices combining the mechanical adaptivity of soft actuators with the imperceptibility of microelectronics, is introduced. Due to their inherent ability to self-assemble, biomimetic microelectronics can firmly yet gently attach to an inorganic or biological tissue enabling enclosure of, for example, nervous fibers, or(More)
We present fuel-free locomotion of magnetic spherical Janus motors driven by magnetically induced thermophoresis--a self-diffusive propulsion of an object in any liquid media due to a local temperature gradient. Within this approach an ac magnetic field is applied to induce thermophoretic motion of the objects via heating a magnetic cap of the particles,(More)
The first highly stretchable and sensitive spin valve sensor on elastomeric membranes are demonstrated. The sensor elements exhibit stable GMR behavior up to tensile strains of 29% in in situ stretching experiments and show no fatigue over 500 loading cycles. This remarkable stretchability is achieved by a predetermined periodic fracture mechanism that(More)
Highly flexible bismuth Hall sensors on polymeric foils are fabricated, and the key optimization steps that are required to boost their sensitivity to the bulk value are identified. The sensor can be bent around the wrist or positioned on the finger to realize an interactive pointing device for wearable electronics. Furthermore, this technology is of great(More)