Denny Z. H. Levett

Learn More
Transcranial Doppler is a widely used noninvasive technique for assessing cerebral artery blood flow. All previous high altitude studies assessing cerebral blood flow (CBF) in the field that have used Doppler to measure arterial blood velocity have assumed vessel diameter to not alter. Here, we report two studies that demonstrate this is not the case.(More)
Many disease states are associated with regional or systemic hypoxia. The study of healthy individuals exposed to high-altitude hypoxia offers a way to explore hypoxic adaptation without the confounding effects of disease and therapeutic interventions. Using (31)P magnetic resonance spectroscopy and imaging, we investigated skeletal muscle energetics and(More)
Lowland residents adapt to the reduced oxygen availability at high altitude through a process known as acclimatisation, but the molecular changes underpinning these functional alterations are not well understood. Using an integrated biochemical/whole-body physiology approach we here show that plasma biomarkers of NO production (nitrite, nitrate) and(More)
We report the first direct observations of deranged microcirculatory blood flow at high altitude, using sidestream dark-field imaging. Images of the sublingual microcirculation were obtained from a group of 12 volunteers during a climbing expedition to Cho Oyu (8,201 m) in the Himalayas. Microcirculatory flow index (MFI) was calculated from the moving(More)
BACKGROUND The physiological responses to hypoxaemia and cellular hypoxia are poorly understood, and inter-individual differences in performance at altitude and outcome in critical illness remain unexplained. We propose a model for exploring adaptation to hypoxia in the critically ill: the study of healthy humans, progressively exposed to environmental(More)
Xtreme Everest 2 (XE2) was part of an ongoing programme of field, laboratory and clinical research focused on human responses to hypoxaemia that was conducted by the Caudwell Xtreme Everest Hypoxia Research Consortium. The aim of XE2 was to characterise acclimatisation to environmental hypoxia during a standardised ascent to high altitude in order to(More)
INTRODUCTION We sought to quantify changes in skeletal muscle oxygenation during exercise using near-infrared spectroscopy (NIRS) in healthy volunteers ascending to high altitude. METHODS Using NIRS, skeletal muscle tissue oxygen saturation (StO2) was measured in the vastus lateralis of 24 subjects. Measurements were performed at sea level (SL; 75 m), at(More)
OBJECTIVES The mechanisms by which low oxygen availability are associated with the development of insulin resistance remain obscure. We thus investigated the relationship between such gluco-insular derangements in response to sustained (hypobaric) hypoxemia, and changes in biomarkers of oxidative stress, inflammation and counter-regulatory hormone(More)
PURPOSE This review evaluates the current and future role of cardiopulmonary exercise testing (CPET) in the context of Enhanced Recovery After Surgery (ERAS) programs. PRINCIPAL FINDINGS There is substantial literature confirming the relationship between physical fitness and perioperative outcome in general. The few small studies in patients undergoing(More)
BACKGROUND AND OBJECTIVE 'Natural selection' has been shown to have enriched the genomes of high-altitude native populations with genetic variants of advantage in this hostile hypoxic environment. In lowlanders who ascend to altitude, genetic factors may also contribute to the substantial interindividual variation in exercise performance noted at altitude.(More)