Dennis W Trent

Learn More
Nucleotide sequences of the envelope protein genes of 19 geographically and temporally distinct dengue (DEN)-4 viruses were determined. Nucleic acid sequence comparison revealed that the identity among the DEN-4 viruses was greater than 92%. Similarity among deduced amino acids was between 96 and 100%; in most cases identical amino acid substitutions(More)
The nucleic acid sequences of the pre-membrane/membrane and envelope protein genes of 23 geographically and temporally distinct dengue (DEN)-3 viruses were determined. This was accomplished by reverse transcriptase-PCR amplification of the structural genes followed by automated DNA sequence analysis. Comparison of nucleic acid sequences revealed that(More)
To identify the molecular determinants for attenuation of wild-type Japanese encephalitis (JE) virus strain SA14, the RNA genome of wild-type strain SA14 and its attenuated vaccine virus SA14-2-8 were reverse transcribed, amplified by PCR and sequenced. Comparison of the nucleotide sequence of SA14-2-8 vaccine virus with virulent parent SA14 virus and with(More)
St. Louis encephalitis (SLE) and West Nile (WN) flaviviruses are genetically closely related and cocirculate in the United States. Virus neutralization tests provide the most specific means for serodiagnosis of infections with these viruses. However, use of wild-type SLE and WN viral strains for laboratory testing is constrained by the biocontainment(More)
The evolution of yellow fever virus over 67 years was investigated by comparing the nucleotide sequences of the envelope (E) protein genes of 20 viruses isolated in Africa, the Caribbean, and South America. Uniformly weighted parsimony algorithm analysis defined two major evolutionary yellow fever virus lineages designated E genotypes I and II. E genotype I(More)
The nucleotide and deduced amino acid sequences of the structural proteins of the TC-83 vaccine strain of Venezuelan equine encephalitis (VEE) virus have been determined from a cDNA clone containing the 26S mRNA coding region. A cDNA clone encoding the equivalent region of the virulent parent VEE virus [Trinidad donkey strain (TRD)] has been sequenced(More)
The glycosylation patterns of the envelope (E) glycoprotein of several naturally occurring strains of St Louis encephalitis (SLE) virus were investigated. SLE viruses were found that contained both glycosylated and non-glycosylated E proteins, and one isolate (Tr 9464) that lacks N-linked glycosylation sites on its E protein was identified. SLE virus(More)
  • 1