#### Filter Results:

#### Publication Year

1981

2015

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

The cyclic sieving phenomenon is defined for generating functions of a set affording a cyclic group action, generalizing Stembridge's q ¼ À1 phenomenon. The phenomenon is shown to appear in various situations, involving q-binomial coefficients, Poíya–Redfield theory, polygon dissections, noncrossing partitions, finite reflection groups, and some finite… (More)

Young's lattice of a partition λ consists of all partitions whose Ferrers diagrams fit inside λ. Several infinite families of partitions are given whose Young's lattice is not rank unimodal. Some related problems are discussed.

Let M be a finite matroid with rank function r. We will write A ⊆ M when we mean that A is a subset of the ground set of M , and write M | A and M/A for the matroids obtained by restricting M to A, and contracting M on A respectively. Let M * denote the dual matroid to M. (See [1] for definitions). The main theorem is Theorem 1. The Tutte polynomial T M (x,… (More)

Interpretations for the q-binomial coefficient evaluated at −q are discussed. A (q, t)-version is established, including an instance of a cyclic sieving phenomenon involving unitary spaces.