Learn More
A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory general circulation model (GClVO is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent(More)
All currently available climate models predict a near-surface warming trend under the influence of rising levels of greenhouse gases in the atmosphere. In addition to the direct effects on climate--for example, on the frequency of heatwaves--this increase in surface temperatures has important consequences for the hydrological cycle, particularly in regions(More)
The impacts of year-to-year and decade-to-decade climatic variations on some of the Pacific Northwest's key natural resources can be quantified to estimate sensitivity to regional climatic changes expected as part of anthropogenic global climatic change. Warmer, drier years, often associated with El Niño events and/or the warm phase of the Pacific Decadal(More)
Climate predictions from four state-of-the-art general circulation models (GCMs) were used to assess the hydrologic sensitivity to climate change of nine large, continental river basins and DOE-PCM3) all predicted transient climate response to changing greenhouse gas concentrations, and incorporated modern land surface parameterizations. Model-predicted(More)
T he hydrology of the Pacific Northwest (PNW) is particularly sensitive to changes in climate because seasonal runoff is dominated by snowmelt from cool season mountain snowpack, and temperature changes impact the balance of precipitation falling as rain and snow. Based on results from 39 global simulations performed for the Fourth Assessment Report of the(More)
[1] We explore a strategy for long-range hydrologic forecasting that uses ensemble climate model forecasts as input to a macroscale hydrologic model to produce runoff and streamflow forecasts at spatial and temporal scales appropriate for water management. Monthly ensemble climate model forecasts produced by the National Centers for Environmental(More)
Satellite-based precipitation estimates with high spatial and temporal resolution and large areal coverage provide a potential alternative source of forcing data for hydrological models in regions where conventional in situ precipitation measurements are not readily available. The La Plata basin in South America provides a good example of a case where the(More)