Dennis M . Dacey

Learn More
Human vision starts with the activation of rod photoreceptors in dim light and short (S)-, medium (M)-, and long (L)- wavelength-sensitive cone photoreceptors in daylight. Recently a parallel, non-rod, non-cone photoreceptive pathway, arising from a population of retinal ganglion cells, was discovered in nocturnal rodents. These ganglion cells express the(More)
To study their detailed morphology, ganglion cells of the human retina were stained by intracellular tracer injection, in an in vitro, whole-mount preparation. This report focuses on the dendritic morphology and mosaic organization of the major, presumed color-opponent, ganglion cell class, the midget cells. Midget cells in the central retina were(More)
Colour vision in humans and Old World monkeys begins with the differential activation of three types of cone photoreceptor which are maximally sensitive to short (S), medium (M) and long (L) wavelengths. Signals from the three cone types are relayed to the retinal ganglion cells via cone-specific bipolar cell types. Colour-coding ganglion cells fall into(More)
Diverse cell types and parallel pathways are characteristic of the vertebrate nervous system, yet it remains a challenge to define the basic components of most neural structures. We describe a process termed retrograde photodynamics that allowed us to rapidly make the link between morphology, physiology, and connectivity for ganglion cells in the macaque(More)
Melanopsin, a novel photopigment, has recently been localized to a population of retinal ganglion cells that display inherent photosensitivity. During continuous light and following light offset, primates are known to exhibit sustained pupilloconstriction responses that resemble closely the photoresponses of intrinsically-photoreceptive ganglion cells. We(More)
The visual system of the macaque monkey has provided a useful model for understanding the neural basis of human vision, yet, there are few detailed comparisons of neural populations other than photoreceptors for the two species. Using intracellular staining in an in vitro preparation of the isolated and intact human retina, we have characterized the(More)
In in-vitro preparations of both macaque and human retina, intracellular injections of Neurobiotin and horseradish peroxidase were used to characterize the morphology, depth of stratification, and mosaic organization of a type of bistratified ganglion cell. This cell type, here called the small bistratified cell, has been shown to project to the(More)
The primate retina is an exciting focus in neuroscience, where recent data from molecular genetics, adaptive optics, anatomy, and physiology, together with measures of human visual performance, are converging to provide new insights into the retinal origins of color vision. Trichromatic color vision begins when the image is sampled by short- (S), middle-(More)
The chromatic dimensions of human color vision have a neural basis in the retina. Ganglion cells, the output neurons of the retina, exhibit spectral opponency; they are excited by some wavelengths and inhibited by others. The hypothesis that the opponent circuitry emerges from selective connections between horizontal cell interneurons and cone(More)
Intracellular injections of Neurobiotin were used to determine whether the major ganglion cell classes of the macaque monkey retina, the magnocellular-projecting parasol, and the parvocellular-projecting midget cells showed evidence of cellular coupling similar to that recently described for cat retinal ganglion cells. Ganglion cells were labeled with the(More)