Learn More
Fracture healing is a specialized post-natal repair process that recapitulates aspects of embryological skeletal development. While many of the molecular mechanisms that control cellular differentiation and growth during embryogenesis recur during fracture healing, these processes take place in a post-natal environment that is unique and distinct from those(More)
The local mechanical environment is a crucial factor in determining cell and tissue differentiation during vertebrate skeletal development and repair. Unlike the basic response of bone to mechanical load, as described in Wolff's law, the mechanobiological relationship between the local mechanical environment and tissue differentiation influences everything(More)
Bone regeneration during fracture healing has been demonstrated repeatedly, yet the regeneration of articular cartilage and joints has not yet been achieved. It has been recognized however that the mechanical environment during fracture healing can be correlated to the contributions of either the endochondral or intramembranous processes of bone formation,(More)
BACKGROUND Cyclooxygenase-2-specific anti-inflammatory drugs (coxibs) and nonspecific nonsteroidal anti-inflammatory drugs have been shown to inhibit experimental fracture-healing. The present study tested the hypothesis that these effects are reversible after short-term treatment. METHODS With use of a standard model of fracture-healing, identical ED50(More)
We report the results of direct mechanical tests of the fibrous periosteum from the tibiotarsi of white leghorn chicks at 4, 6, 8, 9, 10, 11, 12, and 14 weeks of age using a newly developed sample isolation technique. Additionally, this technique allows the determination of the apparent in vivo load on the fibrous periosteum. The periosteum has a highly(More)
Early work on the role of osteocytes in bone regulation suggested that the primary function of these cells was osteolysis. This lytic function was not precisely defined but included mineral homeostasis and at least the initiation of matrix remodeling, if not a primary role in remodeling. This paper is an attempt to promote the concept of osteocytic(More)
Further understanding of how mechanical cues modulate skeletal tissue differentiation can identify potential means of enhancing repair following injury or disease. Prior studies examined the effects of mechanical loading on osteogenesis, chondrogenesis, and fibrogenesis in an effort to enhance bony union. However, exploring how mechanical stimuli can divert(More)
Non-steroidal anti-inflammatory drugs (NSAIDs) specifically inhibit cyclooxygenase (COX) activity and are widely used as anti-arthritics, post-surgical analgesics, and for the relief of acute musculoskeletal pain. Recent studies suggest that non-specific NSAIDs, which inhibit both COX-1 and COX-2 isoforms, delay bone healing. The objectives of this study(More)
Desmodus rotundus, the common vampire bat (Phyllostomidae: Desmodontinae), exhibits complex and variable terrestrial movements that include flight-initiating vertical jumps. This ability is unique among bats and is related to their unusual feeding behavior. As a consequence of this behavior, the wing is expected to have design features that allow both(More)
The utility of cortical allografts in repairing large bone defects is limited by their slow and incomplete incorporation into host bone. In order to determine the effects of recombinant human osteogenic protein-1 (rhOP-1) impregnation on allograft incorporation, we used a canine intercalary bone defect model. Bilateral resection of a 4 cm segment of the(More)