Learn More
Metamorphic hydration and oxidation of ultramafic rocks produces serpentinites, composed of serpentine group minerals and varying amounts of brucite, magnetite, and/or FeNi alloys. These minerals buffer metamorphic fluids to extremely reducing conditions that are capable of producing hydrogen gas. Awaruite, FeNi3, forms early in this process when the(More)
The quantification of greenhouse gases present in the Archaean atmosphere is critical for understanding the evolution of atmospheric oxygen, surface temperatures and the conditions for life on early Earth. For instance, it has been argued that small changes in the balance between two potential greenhouse gases, carbon dioxide and methane, may have dictated(More)
Submarine hydrothermal vents above serpentinite produce chemical potential gradients of aqueous and ionic hydrogen, thus providing a very attractive venue for the origin of life. This environment was most favourable before Earth's massive CO(2) atmosphere was subducted into the mantle, which occurred tens to approximately 100 Myr after the moon-forming(More)
Environmental niches in which life first emerged and later evolved on the Earth have undergone dramatic changes in response to evolving tectonic/geochemical cycles and to biologic interventions, as well as increases in the Sun's luminosity of about 25 to 30 per cent over the Earth's history. It has been inferred that the greenhouse effect of atmospheric(More)
Pre-photosynthetic niches were meagre with a productivity of much less than 10(-4) of modern photosynthesis. Serpentinization, arc volcanism and ridge-axis volcanism reliably provided H(2). Methanogens and acetogens reacted CO(2) with H(2) to obtain energy and make organic matter. These skills pre-adapted a bacterium for anoxygenic photosynthesis, probably(More)
Naturally occurring Cr(VI) has recently been reported in ground and surface waters. Rock strata rich in Cr(III)-bearing minerals, in particular chromite, are universally found in these areas that occur near convergent plate margins. Here we report experiments demonstrating accelerated dissolution of chromite and subsequent oxidation of Cr(III) to aqueous(More)
The goal of our research is to interrogate, and ultimately engineer, the key chemical reactions that occur as a result of the injection of CO 2 into both ultramafic/basaltic rocks and sedimentary rocks, including saline aquifers and petroleum reservoirs. Our work focuses on two areas: (1) enhancing the conversion of CO 2 to carbonate minerals (mineral(More)
  • 1