Dennis Joshua Chia

Learn More
Many of the actions of growth hormone (GH) on somatic growth and tissue maintenance are mediated by insulin-like growth factor-I (IGF-I), a secreted protein whose gene expression is rapidly and potently induced by GH by unknown mechanisms. Recent studies implicating Stat5a and Stat5b in the growth response to GH in mice and observations linking Stat5b to(More)
The GH-activated signal transducer and activator of transcription 5b (STAT5b) is an essential regulator of somatic growth. The transcriptional response to STAT5b in liver is poorly understood. We have combined microarray-based expression profiling and phylogenetic analysis of gene regulatory regions to study the interplay between STAT5b and GH in the(More)
A key agent in the anabolic actions of growth hormone (GH) is insulin-like growth factor-I (IGF-I), a 70-amino acid secreted protein with direct effects on somatic growth and tissue maintenance and repair. GH rapidly and potently stimulates IGF-I gene transcription by mechanisms independent of new protein synthesis, and recent studies have linked the(More)
Many of the long-term physiological effects of GH require hormone-mediated changes in gene expression. The transcription factor signal transducer and activator of transcription 5b (Stat5b) plays a critical role in the actions of GH on growth and metabolism by regulating a large number of GH-dependent genes by incompletely understood mechanisms. Here we have(More)
GH plays a central role in controlling somatic growth, tissue regeneration, and intermediary metabolism in most vertebrate species through mechanisms dependent on the regulation of gene expression. Recent studies using transcript profiling have identified large cohorts of genes whose expression is induced by GH. Other results have demonstrated that signal(More)
Many of the physiological actions of GH are mediated by IGF-I, a secreted 70-residue peptide whose gene expression is induced by GH in the liver and other tissues via mechanisms that remain incompletely characterized but depend on the transcription factor Stat5b. Here we investigate the chromatin landscape of the IGF-I gene in the liver of(More)
The growth hormone (GH)-insulin-like growth factor-I (IGF-I) axis regulates somatic growth during childhood and orchestrates tissue repair throughout the life span. Recently described inactivating mutations in Stat5b in humans with impaired growth have focused attention on this transcription factor as a key agent linking GH-stimulated signals to IGF-I gene(More)
GH exerts a diverse array of physiological actions that include prominent roles in growth and metabolism, with a major contribution via stimulating IGF-1 synthesis. GH achieves its effects by influencing gene expression profiles, and Igf1 is a key transcriptional target of GH signaling in liver and other tissues. This review examines the mechanisms of(More)
A predicted alanine to proline substitution in Stat5b that results in profound short stature, growth hormone insensitivity, and immunodeficiency represents the first natural mutation of this transcription factor in a human. To understand the mechanisms responsible for these pathophysiological abnormalities, we have studied the biochemical and biophysical(More)
Since the somatomedin hypothesis of growth hormone (GH) action was first formulated nearly 50 years ago, the key roles of both GH and insulin-like growth factor (IGF)-I in human growth have been confirmed and extended to include local effects on tissue maintenance and repair. More recent insights have revealed a dark side to the GH/IGF-I signaling system.(More)