Learn More
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and(More)
Optimal plant defense should incorporate any mechanisms that influence the feeding behavior of potential pests. From a diverse collection of examples suggesting that the defense of a plant may be improved in the company of specific neighbors, we discuss a framework of operational mechanisms that begin to clarify some aspects of the recognized influence of(More)
Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island(More)
Litter processing by macroinvertebrates typically involves suites of species that act together to determine rates of breakdown and decomposition. However, tropical oceanic islands and coastal fringes on continents are often dominated by one or a few species of omnivorous land crabs that consume leaf litter. We used an exclusion experiment, together with(More)
In multiply invaded ecosystems, introduced species should interact with each other as well as with native species. Invader-invader interactions may affect the success of further invaders by altering attributes of recipient communities and propagule pressure. The invasional meltdown hypothesis (IMH) posits that positive interactions among invaders initiate(More)
Biological invasions have significant ecological, evolutionary and economic consequences. Ants are exemplary invaders and their invasion success is frequently attributed to a shift in social structure between native and introduced populations. Here, we use a multidisciplinary approach to determine the social structure, origin and expansion of the invasive(More)
The influence of keystone consumers on community structure is frequently context-dependent; the same species plays a central organising role in some situations, but not others. On Christmas Island, in the Indian Ocean, a single species of omnivorous land crab, Gecarcoidea natalis, dominates the forest floor across intact rainforest. We hypothesised that(More)
Associations between mites and leaf domatia are widespread, abundant and probably ancient. Recent research has shown that mites commonly shelter, develop and reproduce within domatia on plants in many geographic regions, from the tropics to the temperate zone, and most of these mites belong to predaceous or fungivorous taxa. Of hypotheses offered to explain(More)
Biological invasions can alter direct and indirect interactions between species, generating far-reaching changes in ecological networks that affect key ecological functions. We used model and real fruit assays to show that the invasion and formation of high-density supercolonies by the yellow crazy ant (YCA), Anoplolepis gracilipes, disrupt frugivory by(More)
Acarodomatia or "mite houses" are located on leaves of many present-day angiosperms and are inhabited by mites that may maintain leaf hygiene. Eocene deposits in southern Australia have yielded acarodomatia on fossil leaves of Elaeocarpaceae and Lauraceae and also contain oribatid mites with close affinities to those that inhabit the acarodomatia of the(More)