Learn More
Many laboratories have begun to develop brain-computer interface (BCI) systems that provide communication and control capabilities to people with severe motor disabilities. Further progress and realization of practical applications depends on systematic evaluations and comparisons of different brain signals, recording methods, processing algorithms, output(More)
Over the past decade, many laboratories have begun to explore brain-computer interface (BCI) technology as a radically new communication option for those with neuromuscular impairments that prevent them from using conventional augmentative communication methods. BCI's provide these users with communication channels that do not depend on peripheral nerves(More)
Brain-computer interfaces (BCIs) can provide communication and control to people who are totally paralyzed. BCIs can use noninvasive or invasive methods for recording the brain signals that convey the user's commands. Whereas noninvasive BCIs are already in use for simple applications, it has been widely assumed that only invasive BCIs, which use electrodes(More)
This study assesses the relative performance characteristics of five established classification techniques on data collected using the P300 Speller paradigm, originally described by Farwell and Donchin (1988 Electroenceph. Clin. Neurophysiol. 70 510). Four linear methods: Pearson's correlation method (PCM), Fisher's linear discriminant (FLD), stepwise(More)
OBJECTIVE Electromyogram (EMG) contamination is often a problem in electroencephalogram (EEG) recording, particularly, for those applications such as EEG-based brain-computer interfaces that rely on automated measurements of EEG features. As an essential prelude to developing methods for recognizing and eliminating EMG contamination of EEG, this study(More)
Individuals can learn to control the amplitude of mu-rhythm activity in the EEG recorded over sensorimotor cortex and use it to move a cursor to a target on a video screen. The speed and accuracy of cursor movement depend on the consistency of the control signal and on the signal-to-noise ratio achieved by the spatial and temporal filtering methods that(More)
This study examines the effects of expanding the classical P300 feature space on the classification performance of data collected from a P300 speller paradigm [Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroenceph Clin Neurophysiol 1988;70:510-23]. Using stepwise linear(More)
People with severe motor disabilities can maintain an acceptable quality of life if they can communicate. Brain-computer interfaces (BCIs), which do not depend on muscle control, can provide communication. Four people severely disabled by ALS learned to operate a BCI with EEG rhythms recorded over sensorimotor cortex. These results suggest that a(More)
BACKGROUND EEG-based communication could be a valuable new augmentative communication technology for those with severe motor disabilities. Like all communication methods, it faces the problem of errors in transmission. In the Wadsworth EEG-based brain-computer interface (BCI) system, subjects learn to use mu or beta rhythm amplitude to move a cursor to(More)