Dennis Farrelly

Learn More
The importance of glucokinase (GK; EC 2.7.1.12) in glucose homeostasis has been demonstrated by the association of GK mutations with diabetes mellitus in humans and by alterations in glucose metabolism in transgenic and gene knockout mice. Liver GK activity in humans and rodents is allosterically inhibited by GK regulatory protein (GKRP). To further(More)
Glucokinase is the predominant hexokinase in pancreatic beta-cells and liver parenchymal cells and functions as a critical component of the glucose-sensing apparatus in these glucose-responsive cell types. In the beta-cells, the sensing leads to insulin secretion, while the role in hepatocytes is thought to be in hepatic glucose uptake. To determine the(More)
Muraglitazar/BMS-298585 (2) has been identified as a non-thiazolidinedione PPAR alpha/gamma dual agonist that shows potent activity in vitro at human PPARalpha (EC(50) = 320 nM) and PPARgamma(EC(50) = 110 nM). Compound 2 shows excellent efficacy for lowering glucose, insulin, triglycerides, and free fatty acids in genetically obese, severely diabetic db/db(More)
Muraglitazar, a novel dual (alpha/gamma) peroxisome proliferator-activated receptor (PPAR) activator, was investigated for its antidiabetic properties and its effects on metabolic abnormalities in genetically obese diabetic db/db mice. In db/db mice and normal mice, muraglitazar treatment modulates the expression of PPAR target genes in white adipose tissue(More)
There are two major defects in type 2 diabetes: 1) insulin resistance and 2) insulin deficiency due to loss of beta-cell function. Here we demonstrated that treatment with muraglitazar (a dual peroxisome proliferator-activated receptor alpha/gamma activator), when initiated before or after the onset of diabetes in mice, is effective against both defects. In(More)
The design, synthesis and structure-activity relationships of a novel series of N-phenyl-substituted pyrrole, 1,2-pyrazole and 1,2,3-triazole acid analogs as PPAR ligands are outlined. The triazole acid analogs 3f and 4f were identified as potent dual PPARalpha/gamma agonists both in binding and functional assays in vitro. The 3-oxybenzyl triazole acetic(More)
The design, synthesis and structure-activity relationships of a novel series of 3,4-disubstituted pyrrolidine acid analogs as PPAR ligands is outlined. In both the 1,3- and 1,4-oxybenzyl pyrrolidine acid series, the preferred stereochemistry was shown to be the cis-3R,4S isomer, as exemplified by the potent dual PPARα/γ agonists 3k and 4i. The(More)
A novel class of azetidinone acid-derived dual PPARalpha/gamma agonists has been synthesized for the treatment of diabetes and dyslipidemia. The preferred stereochemistry in this series for binding and functional agonist activity against both PPARalpha and PPARgamma receptors was shown to be 3S,4S. Synthesis, in vitro and in vivo activities of compounds in(More)
Several series of substituted dehydropiperidine and piperidine-4-carboxylic acid analogs have been designed and synthesized as novel, potent dual PPARalpha/gamma agonists. The SAR of these series of analogs is discussed. A rare double bond migration occurred during the basic hydrolysis of the alpha,beta-unsaturated dehydropiperidine esters 12, and the(More)