Dennis Claessen

Learn More
Streptomycetes exhibit a complex morphological differentiation. After a submerged mycelium has been formed, filaments grow into the air to septate into spores. A class of eight hydrophobic secreted proteins, ChpA-H, was shown to be instrumental in the development of Streptomyces coelicolor. Mature forms of ChpD-H are up to 63 amino acids in length, and(More)
The characteristic shape of bacterial cells is mainly determined by the cell wall, the synthesis of which is orchestrated by penicillin-binding proteins (PBPs). Rod-shaped bacteria have two distinct modes of cell wall synthesis, involved in cell elongation and cell division, which are believed to employ different sets of PBPs. A long-held question has been(More)
Streptomycetes form hydrophobic aerial hyphae that eventually septate into hydrophobic spores. Both aerial hyphae and spores possess a typical surface layer called the rodlet layer. We present here evidence that rodlet formation is conserved in the streptomycetes. The formation of the rodlet layer is the result of the interplay between rodlins and chaplins.(More)
Amyloids are filamentous protein structures ∼10 nm wide and 0.1–10 μm long that share a structural motif, the cross-β structure. These fibrils are usually associated with degenerative diseases in mammals. However, recent research has shown that these proteins are also expressed on bacterial and fungal cell surfaces. Microbial amyloids are important in(More)
Although bacteria frequently live as unicellular organisms, many spend at least part of their lives in complex communities, and some have adopted truly multicellular lifestyles and have abandoned unicellular growth. These transitions to multicellularity have occurred independently several times for various ecological reasons, resulting in a broad range of(More)
The filamentous bacteria Streptomyces coelicolor and Streptomyces lividans exhibit a complex life cycle. After a branched submerged mycelium has been established, aerial hyphae are formed that may septate to form chains of spores. The aerial structures possess several surface layers of unknown nature that make them hydrophobic, one of which is the rodlet(More)
The chaplin proteins are instrumental in the formation of reproductive aerial structures by the filamentous bacterium Streptomyces coelicolor. They lower the water surface tension thereby enabling aerial growth. In addition, chaplins provide surface hydrophobicity to the aerial hyphae by assembling on the cell surface into an amphipathic layer of amyloid(More)
Streptomyces coelicolor is characterized by a complex life cycle and serves as a model system for bacterial development. After a feeding substrate mycelium has been formed, this filamentous bacterium differentiates by forming aerial hyphae that septate into spores. The bld cascade regulates initiation of aerial growth, whereas the whi genes control spore(More)
Chaplins are small, secreted proteins of streptomycetes that play instrumental roles in the formation of aerial hyphae and attachment of hyphae to surfaces. Here we show that the purified proteins self-assemble at a water/air interface into an asymmetric and amphipathic protein membrane that has an amyloid nature. Cryo-tomography reveals that the(More)
Morphogenesis in streptomycetes is characterized by the formation of aerial hyphae that emerge from the substrate mycelium. Despite many years of study, a detailed picture of the events that occur during the transition from substrate to aerial mycelium has yet to be defined. In this paper, it was shown that a specific cell death event takes place during(More)