Learn More
Progressive kidney failure is a genetically and clinically heterogeneous group of disorders. Podocyte foot processes and the interposed glomerular slit diaphragm are essential components of the permeability barrier in the kidney. Mutations in genes encoding structural proteins of the podocyte lead to the development of proteinuria, resulting in progressive(More)
A simple method for antigen retrieval in tissue sections and cell cultures is described. Because many antibodies recognize denatured proteins on western blots, but are poorly reactive by immunocytochemistry, the effect of applying sodium dodecyl sulfate (SDS) to cryostat sections of tissues and to cell cultures prior to immunostaining was examined. In many(More)
Several transporting epithelia in vertebrates and invertebrates contain cells that are specialized for proton or bicarbonate secretion. These characteristic 'mitochondria-rich' (MR) cells have several typical features, the most important of which is an extremely high expression of a vacuolar-type proton-pumping ATPase (H+V-ATPase) both on intracellular(More)
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length(More)
Caveolae are specialized invaginations of the plasma membrane found in numerous cell types. They have been implicated as playing a role in a variety of physiological processes and are typically characterized by their association with the caveolin family of proteins. We show here by means of targeted gene disruption in mice that a distinct(More)
Culture of preimplantation mammalian embryos and cells can influence their subsequent growth and differentiation. Previously, we reported that culture of mouse embryonic stem cells is associated with deregulation of genomic imprinting and affects the potential for these cells to develop into normal fetuses. The purpose of our current study was to determine(More)
Kinesin and dynein are motor proteins that move in opposite directions along microtubules. In this study, we examine the consequences of having kinesin and dynein (ciliary outer arm or cytoplasmic) bound to glass surfaces interacting with the same microtubule in vitro. Although one might expect a balance of opposing forces to produce little or no net(More)
To determine the role of the phosphatidylinositol 3-kinase (PI3-K) pathway in pancreas development, we generated a pancreas-specific knockout of Pten, a negative regulator of PI3-K signaling. Knockout mice display progressive replacement of the acinar pancreas with highly proliferative ductal structures that contain abundant mucins and express Pdx1 and(More)
Urinary exosomes or microvesicles are being studied intensively to identify potential new biomarkers for renal disease. We sought to identify whether these microvesicles contain nucleic acids. We isolated microvesicles from human urine in the same density range as that previously described for urinary exosomes and found them to have an RNA integrity profile(More)
Blood vessel endothelium has been recently shown to induce endocrine pancreatic development. Because pancreatic endocrine cells or islets express high levels of vascular endothelial growth factors, VEGFs, we investigated the role of a particular VEGF, VEGF-A, on islet vascularization and islet function. By deleting VEGF-A in the mouse pancreas, we show that(More)