Deniz Baskent

Learn More
Speech recognition was measured as a function of spectral resolution (number of spectral channels) and speech-to-noise ratio in normal-hearing (NH) and cochlear-implant (CI) listeners. Vowel, consonant, word, and sentence recognition were measured in five normal-hearing listeners, ten listeners with the Nucleus-22 cochlear implant, and nine listeners with(More)
OBJECTIVE To update a 15-year-old study of 800 postlinguistically deaf adult patients showing how duration of severe to profound hearing loss, age at cochlear implantation (CI), age at onset of severe to profound hearing loss, etiology and CI experience affected CI outcome. STUDY DESIGN Retrospective multicenter study. METHODS Data from 2251 adult(More)
When two targets follow each other directly in rapid serial visual presentation (RSVP), they are often identified correctly but reported in the wrong order. These order reversals are commonly explained in terms of the rate at which the two targets are processed, the idea being that the second target can sometimes overtake the first in the race toward(More)
  • Deniz Baskent
  • The Journal of the Acoustical Society of America
  • 2006
Speech recognition by normal-hearing listeners improves as a function of the number of spectral channels when tested with a noiseband vocoder simulating cochlear implant signal processing. Speech recognition by the best cochlear implant users, however, saturates around eight channels and does not improve when more electrodes are activated, presumably due to(More)
PURPOSE Fitting a cochlear implant (CI) for optimal speech perception does not necessarily optimize listening effort. This study aimed to show that listening effort may change between CI processing conditions for which speech intelligibility remains constant. METHOD Nineteen normal-hearing participants listened to CI simulations with varying numbers of(More)
OBJECTIVE To test the influence of multiple factors on cochlear implant (CI) speech performance in quiet and in noise for postlinguistically deaf adults, and to design a model of predicted auditory performance with a CI as a function of the significant factors. STUDY DESIGN Retrospective multi-centre study. METHODS Data from 2251 patients implanted(More)
Previous experiments have demonstrated that the correct tonotopic representation of spectral information is important for speech recognition. However, in prosthetic devices, such as hearing aids and cochlear implants, there may be a frequency/place mismatch due in part to the signal processing of the device and in part to the pathology that caused the(More)
In normal acoustic hearing the mapping of acoustic frequency information onto the appropriate cochlear place is a natural biological function, but in cochlear implants it is controlled by the speech processor. The cochlear tonotopic range of the implant is determined by the length and insertion depth of the electrode array. Conventional cochlear implant(More)
While new electrode designs allow deeper insertion and wider coverage in the cochlea, there is still considerable variation in the insertion depth of the electrode array among cochlear implant users. The present study measures speech recognition as a function of insertion depth, varying from a deep insertion of 10 electrodes at 28.8 mm to a shallow(More)
In sensorineural hearing loss, damage to inner hair cells or the auditory nerve may result in dead regions in the cochlea, where the information transmission is disrupted. In cochlear implants, similar dead regions might appear if the spiral ganglia do not function. Shannon et al. [J. Assoc. Res. Otolaryngol. 3, 185-199 (2002)] simulated dead regions of(More)