Learn More
A major goal in genomics is to understand how genes are regulated in different tissues, stages of development, diseases, and species. Mapping DNase I hypersensitive (HS) sites within nuclear chromatin is a powerful and well-established method of identifying many different types of regulatory elements, but in the past it has been limited to analysis of(More)
Analysis of the human genome sequence has identified approximately 25000-30000 protein-coding genes, but little is known about how most of these are regulated. Mapping DNase I hypersensitive (HS) sites has traditionally represented the gold-standard experimental method for identifying regulatory elements, but the labor-intensive nature of this technique has(More)
Adipose-derived stem cells (ADSCs) show nearly unlimited potential in medical and animal science. Currently, understanding of the biological mechanisms regulating ADSC growth in vitro remains very limited. Histone acetylation, an epigenetic modification, plays a key role in maintaining stem cell properties. To further study its effect on ADSC growth(More)
  • 1