Learn More
The basal (constitutive) activity of G protein-coupled receptors allows for the measurement of inverse agonist activity. Some competitive antagonists turn into inverse agonists under conditions where receptors are constitutively active. In contrast, neutral antagonists have no inverse agonist activity, and they block both agonist and inverse agonist(More)
Cdc42 plays important roles in cytoskeleton organization, cell cycle progression, signal transduction, and vesicle trafficking. Overactive Cdc42 has been implicated in the pathology of cancers, immune diseases, and neuronal disorders. Therefore, Cdc42 inhibitors would be useful in probing molecular pathways and could have therapeutic potential. Previous(More)
OBJECTIVE To compare the pattern of pelvic girdle muscle activation in normal subjects and hemiparetic patients while stepping and maintaining standing balance. DESIGN Group comparison. METHOD Seventeen patients who had regained the ability to walk after a single hemiparetic stroke were studied together with 16 normal controls. Median interval between(More)
OBJECTIVE To describe the recovery of neurophysiological responses to perturbation of standing balance after stroke. METHODS Surface electromyography (EMG) from hip abductors and adductors and ground reaction forces (GRF) were measured in response to 20 sideways pushes applied to the pelvis by a linear motor. Each subject's data from pushes in each(More)
Recent evidence indicates that agonist ligands of G protein coupled receptors (GPCR) can activate different signaling systems. Such "agonist-directed" signaling also occurs with opioid receptors. Previous work from our laboratory showed that chronic morphine, but not DAMGO, up-regulates the expression of Galpha12 and that both morphine and DAMGO decreased(More)
OBJECTIVE To investigate if measuring ground reaction force after a sideways push at the hips gives a measure of standing balance in stroke subjects. METHODS Fifteen control subjects and 13 right hemiparetic subjects who were able to stand independently stood with their feet on a single forceplate. Horizontal sideways pushes of 3% body weight were(More)
TASK-1 is a two-pore domain potassium channel that is important to modulating cell excitability, most notably in the context of neuronal pathways. In order to leverage TASK-1 for therapeutic benefit, its physiological role needs better characterization; however, designing selective inhibitors that avoid the closely related TASK-3 channel has been(More)
Herkinorin is the first μ opioid (MOP) selective agonist derived from salvinorin A, a hallucinogenic natural product. Previous work has shown that, unlike other opioids, herkinorin does not promote the recruitment of β-arrestin-2 to the MOP receptor and does not lead to receptor internalization. This paper presents the first in vivo evaluation of(More)
Chemotherapeutics tumor resistance is a principal reason for treatment failure, and clinical and experimental data indicate that multidrug transporters such as ATP-binding cassette (ABC) B1 and ABCG2 play a leading role by preventing cytotoxic intracellular drug concentrations. Functional efflux inhibition of existing chemotherapeutics by these pumps(More)
The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been(More)