Learn More
Desmin-related myopathies (DRM) are inherited neuromuscular disorders characterized by adult onset and delayed accumulation of aggregates of desmin, a protein belonging to the type III intermediate filament family, in the sarcoplasma of skeletal and cardiac muscles. In this paper, we have mapped the locus for DRM in a large French pedigree to a 26-cM(More)
A null mutation was introduced into the mouse desmin gene by homologous recombination. The desmin knockout mice (Des -/-) develop normally and are fertile. However, defects were observed after birth in skeletal, smooth, and cardiac muscles (Li, Z., E. Colucci-Guyon, M. Pincon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet. 1996. Dev. Biol.(More)
To address the biological role of vimentin in the context of the living organism, we have introduced a null mutation of the vimentin gene into the germ line of mice. Surprisingly, animals homozygous for this mutation developed and reproduced without an obvious phenotype. Immunoblotting, immunofluorescence, and immunogold labeling analysis confirmed the(More)
In order to further our understanding of the biological role of desmin, the muscle-specific intermediate filament protein, a null mutation in the desmin gene was introduced into the germ line of mice. Despite the complete lack of desmin, these mice developed and reproduced. Since we show that skeletal, cardiac, and smooth muscles form in the Des-/- mice, it(More)
The appearance of neurofilaments (NFs) and vimentin (Vim) in the nervous system of the mouse embryo was documented using immunohistochemical techniques. The three NF protein subunits appear early and simultaneously in central and peripheral neurons at 9 to 10 days of gestation. The onset of NF expression is concomitant with axon elongation and correlates(More)
Intermediate filament (IF) proteins are constituents of the cytoskeleton, conferring resistance to mechanical stress, and are encoded by a dispersed multigene family. In man we have identified two isoforms (180 and 150 kDa) of the IF protein synemin. Synemin alpha and beta have a very short N-terminal domain of 10 amino acids and a long C-terminal domain(More)
A recombinant clone encoding for the human desmin gene (des) has been isolated and characterized and its complete nucleotide sequence has been determined. The 8.4-kb gene has nine exons separated by introns ranging in size from 0.1-2.2 kb. Comparison of the human des gene with that of the hamster has shown that there is a full correspondence in position,(More)
Desmin, the main component of intermediate filaments (IFs) in mature skeletal muscle, forms an interlinking scaffold around myofibrils with connections to the sarcolemma and the nuclear membrane. Desmin is enriched in neuromuscular and myotendinous junctions. Mice lacking the desmin gene develop normally and reproduce. However, postnatally they develop a(More)
Human bone marrow endothelial cells (HBMEC) are intimately involved in the homing of hematopoietic progenitor cells (HPC) to the bone marrow and in the regulation of proliferation and differentiation of these cells. Because availability of primary HBMEC and their capacity to be cultured in vitro are limited, we used isolated HBMEC to establish a cloned cell(More)
During the development of the mouse embryo, desmin is one of the first muscle proteins detected in both the heart and the somites. The expression of the desmin gene differs from most other muscle genes, since it is initiated in replicating myoblasts and accumulates as the muscle differentiates. We have characterized a muscle-specific enhancer which directs(More)