Learn More
It is common knowledge that light fluids rise while heavy fluids sink in the gravity field. The most obvious case is the isothermal Rayleigh-Taylor instability when a heavy fluid is placed on top of a light one. In the nonisothermal case, while heating from above, the density stratification is stable in a pure liquid. However, unstable density(More)
The development of thermovibrational convection in a cubic cell filled with high Prandtl number liquid (isopropanol) is studied. Direct nonlinear simulations are performed by solving three-dimensional Navier-Stokes equations in the Boussinesq approximation. The cell is subjected to high frequency periodic oscillations perpendicular to the applied(More)
We report on a new nonlinear dynamics occurring in a confined cylindrical column filled with fluid (liquid bridge) and heated from above. We demonstrate and analyze the novel oscillatory flow state created by the interaction of two hydrothermal waves of different origins: one propagates vertically from the cold towards the hot side (m=0) and another is(More)
Buoyancy-driven convective flows are numerically analyzed in a cubic enclosure, containing a liquid subjected to a temperature difference between opposite lateral walls; all other walls are thermally insulated. The stationary gravity vector is perpendicular to the applied temperature gradient. The steady flow patterns are investigated within the framework(More)
We report experimental evidence of convection caused by translational vibration of nonuniformly heated fluid in low gravity. The theory of vibrational convection in weightlessness is well developed but direct experimental proof has been missing. An innovative point of the experiment is the observation of a temperature field in the front and side views of(More)
We present experimental results obtained under normal gravity on the dynamics of solid particles in periodic oscillatory thermocapillary-driven flows in a non-isothermal liquid bridge made of decane. Inertial particles of different densities and in the size range approximately 0.75-75 μm are able to form stable coherent structures (particle accumulation(More)
Small particles transported by a fluid medium do not necessarily have to follow the flow. We show that for a wide class of time-periodic incompressible flows inertial particles have a tendency to spontaneously align in one-dimensional dynamic coherent structures. This effect may take place for particles so small that often they would be expected to behave(More)
A parametric investigation of the onset of chaos in a liquid bridge was numerically carried out for a medium Prandtl number liquid, Pr = 4, and unit aspect ratio under zero-gravity conditions. Spatiotemporal patterns of thermocapillary flow were successively studied beginning from the onset of instability up to the appearance of the nonperiodic flow and(More)
  • 1