Denis Machon

Learn More
Amorphous and crystalline forms of silicon are well-known, tetrahedrally coordinated semiconductors. High-pressure studies have revealed extensive polymorphism among various metallic crystal structures containing atoms in six-, eight- and 12-fold coordination. Melting silicon at ambient or high pressure results in a conducting liquid, in which the average(More)
A lowto high-density pressure-driven phase transition in amorphous silicon is investigated by synchrotron x-ray diffraction in the diamond anvil cell. Complementary atomistic molecular dynamics computer simulations provide insight into the underlying structural transformations and allow us to interpret the structure factors obtained from experiment. During(More)
Through a systematic structural search we found an allotrope of carbon with Cmmm symmetry which we predict to be more stable than graphite for pressures above 10 GPa. This material, which we refer to as Z-carbon, is formed by pure sp(3) bonds and it provides an explanation to several features in experimental x-ray diffraction and Raman spectra of graphite(More)
In this work, we study the adhesion forces between atomic force microscopy (AFM) tips and superficial dentin etched with phosphoric acid. Initially, we quantitatively analyze the effect of acid etching on the surface heterogeneity and the surface roughness, two parameters that play a key role in the adhesion phenomenon. From a statistical study of the(More)
Exfoliated graphene and few layer graphene samples supported on SiO(2) have been studied by Raman spectroscopy at high pressure. For samples immersed on a alcohol mixture, an electron transfer of ∂n/∂P ∼ 8 × 10(12) cm(-2) GPa(-1) is observed for monolayer and bilayer graphene, leading to giant doping values of n ∼ 6 × 10(13) cm(-2) at the maximum pressure(More)
Perfectly crystalline solids are excellent heat conductors. Prominent counterexamples are intermetallic clathrates, guest-host systems with a high potential for thermoelectric applications due to their ultralow thermal conductivities. Our combined experimental and theoretical investigation of the lattice dynamics of a particularly simple binary(More)
The elastic properties of InP nanowires are investigated by photoluminescence measurements under hydrostatic pressure at room temperature and experimentally deduced values of the linear pressure coefficients are obtained. The pressure-induced energy shift of the A and B transitions yields a linear pressure coefficient of αA = 88.2 ± 0.5 meV/GPa and αB =(More)
Below a critical particle size, some pressurized compounds (e.g. TiO2, Y2O3, PbTe) undergo a crystal-to-amorphous transformation instead of a polymorphic transition. This effect reflects the greater propensity of nanomaterials for amorphization. In this work, a panorama of thermodynamic interpretations is given: first, a descriptive analysis based on the(More)