Denis Kovacs

Learn More
High-order and regularly sampled surface representations are more efficient and compact than general meshes and considerably simplify many geometric modeling and processing algorithms. A number of recent algorithms for conversion of arbitrary meshes to regularly sampled form (typically quadrangulation) aim to align the resulting mesh with feature lines of(More)
Quadrangulation methods aim to approximate surfaces by semi-regular meshes with as few extraordinary vertices as possible. A number of techniques use the harmonic parameterization to keep quads close to squares, or fit parametrization gradients to align quads to features. Both types of techniques create near-isotropic quads; feature-aligned quadrangulation(More)
Meshes with T-joints (T-meshes) and related high-order surfaces have many advantages in situations where flexible local refinement is needed. At the same time, designing subdivision rules and bases for T-meshes is much more difficult, and fewer options are available. For common geometric modeling tasks it is desirable to retain the simplicity and(More)
Behavioral experiments were performed on 342 subjects to determine whether behavior, which could affect the level of personal exposure, is exhibited in response to odors and labels which are commonly used for household chemicals. Potential for exposure was assessed by having subjects perform cleaning tasks presented as a product preference test, and noting(More)
Nonlinear Galerkin methods utilize approximate inertial manifolds to reduce the spatial error of the standard Galerkin method. For certain scenarios, where a rough forcing term is used, a simple postprocessing step yields the same improvements that can be observed with nonlinear Galerkin. We show that this improvement is mainly due to the information about(More)
Curvilinear features act as a basis in description and representation of a variety of real world patterns spanning from simple regular patterns like honeycomb tiling or text glyphs to very complicated random patterns like networks of furrows on the surface of the human skin, webs of cracks and fissure patterns on dry soil, clay, or old paintings, networks(More)
The creation of 3D models is a fundamental task in computer graphics. The task is required by professional artists working on movies, television, and games, and desired by casual users who wish to make their own models for use in virtual worlds or as a hobby. In this thesis, we consider approaches to creating and editing 3D models that minimize the user’s(More)
The creation, manipulation and display of piecewise smooth surfaces has been a fundamental topic in computer graphics since its inception. The applications range from highest-quality surfaces for manufacturing in CAD to believable animations of virtual creatures in special effects, to virtual worlds rendered in real-time in computer games. Our focus is on(More)