Denis Guédin

Learn More
Nicotinic receptors — a family of ligand-gated ion channels that mediate the effects of the neurotransmitter acetylcholine — are among the most well understood allosteric membrane proteins from a structural and functional perspective. There is also considerable interest in modulating nicotinic receptors to treat nervous-system disorders such as Alzheimer's(More)
Genistein, an isoflavone inhibitor of tyrosine-specific protein kinases, was shown to specifically block the 22Na+ influx through voltage-sensitive Na+ channels in cultured rat brain neurons, whereas other tyrosine kinase antagonists such as lavendustin A, compound 5, tyrphostin A47 and an erbstatin analog were inactive at concentrations known to block(More)
Na+ channels are the primary molecular targets of the pyrethroid insecticides. Na+ channels consisting of only a type IIA alpha subunit expressed in Chinese hamster ovary cells responded to pyrethroid treatment in a normal manner: a sustained Na+ current was induced progressively after each depolarizing pulse in a train of stimuli, and this Na+ current(More)
A three-dimensional model of the extracellular domain of the GABA(B) receptor has been built by homology with the leucine/isoleucine/valine-binding protein. The complete putative GABA-binding site in the extracellular domain is described in both the open and closed states. The dynamics of the "Venus flytrap" mechanism has been studied, suggesting that the(More)
The constitutive activation of G-protein-coupled receptors is a major new approach to investigating their physiopathology and pharmacology. A large number of spontaneous and site-directed mutations resulting in constitutive activity have been identified, but systematic mapping of the amino acids involved for a given receptor would be extremely useful for(More)
Purified and reconstituted sodium channels have previously been shown to be functional in voltage-dependent ion conductance and in high affinity binding of tetrodotoxin and saxitoxin at neurotoxin receptor site 1 and alpha-scorpion toxins at receptor site 3, but high affinity binding of neurotoxins at receptor sites 2, 4, and 5 has not been demonstrated.(More)
Endothelin-1 (ET-1) is formed from its precursor preproET-1 via the cleavage of the intermediate bigET-1 by endothelin-converting enzyme (ECE-1). However, the subcellular site at which this step occurs is not clear: It could occur intravesicularly along the secretory pathway or bigET-1 might be released and processed extracellularly. To address this point,(More)
Mutations of the PARK2 and PINK1 genes, encoding the cytosolic E3 ubiquitin-protein ligase Parkin and the mitochondrial serine/threonine kinase PINK1, respectively, cause autosomal recessive early-onset Parkinson’s disease (PD). Parkin and PINK1 cooperate in a biochemical mitochondrial quality control pathway regulating mitochondrial morphology, dynamics(More)
Functional conversion of big-endothelin-1 to endothelin-1 and characterization of endothelin receptor subtype were investigated in cultured rat aortic endothelial cells. Exogenous endothelin-1 and big-endothelin-1 both increased arachidonic acid release and inositol phosphate production dose dependently. Endothelin-1 was more potent than big-endothelin-1 as(More)
Structural modification performed on a 4-methyl-4-(4-hydroxyphenyl)hydantoin series is described which resulted in the development of a new series of 4-(hydroxymethyl)diarylhydantoin analogues as potent, partial agonists of the human androgen receptor. This led to the identification of(More)