Learn More
Myotonic dystrophy type 1 (DM1) is caused by an unstable CTG repeat expansion in the 3'UTR of the DM protein kinase (DMPK) gene. DMPK transcripts carrying CUG expansions form nuclear foci and affect splicing regulation of various RNA transcripts. Furthermore, bidirectional transcription over the DMPK gene and non-conventional RNA translation of repeated(More)
The steroid receptor RNA activator (SRA) has the unusual property to function as both a non-coding RNA (ncRNA) and a protein SRAP. SRA ncRNA is known to increase the activity of a range of nuclear receptors as well as the master regulator of muscle differentiation MyoD. The contribution of SRA to either a ncRNA or a protein is influenced by alternative(More)
Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1(More)
BACKGROUND MicroRNAs (miRNAs) are small RNA molecules that post-transcriptionally regulate gene expression and have been shown to play an important role during development. miR-1, miR-133a, miR-133b and miR-206 are expressed in muscle tissue and induced during muscle cell differentiation, a process that directs myoblasts to differentiate into mature(More)
Myotonic Dystrophy type I (DM1) is caused by an abnormal expansion of CTG triplets in the 3' UTR of the dystrophia myotonica protein kinase (DMPK) gene, leading to the aggregation of the mutant transcript in nuclear RNA foci. The expanded mutant transcript promotes the sequestration of the MBNL1 splicing factor, resulting in the misregulation of a subset of(More)
Myotonic dystrophy (DM) is a multi-system neuromuscular disorder for which there is no treatment. We have developed a medium throughput phenotypic assay, based on the identification of nuclear foci in DM patient cell lines using in situ hybridization and high-content imaging to screen for potentially useful therapeutic compounds. A series of further assays(More)
Myotonic dystrophy type 1 (DM1) is a neuromuscular disease caused by the expansion of a CTG repeat in the DMPK gene and characterised by progressive skeletal muscle weakness and wasting. To investigate the effects of the CTG expansion on the physiological function of the skeletal muscles, we have used a transgenic mouse model carrying the human DM1 region(More)
Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel(More)
With the goal of identifying splicing alterations in myotonic dystrophy 1 (DM1) tissues that may yield insights into targets or mechanisms, we have surveyed mis-splicing events in three systems using a RT-PCR screening and validation platform. First, a transgenic mouse model expressing CUG-repeats identified splicing alterations shared with other mouse(More)
The congenital form of myotonic dystrophy type 1 (DM1) is the most severe type of the disease associated with CTG expansions over 1500 repeats and delayed muscle maturation. The mechanistic basis of the congenital form of DM1 is mostly unknown. Here, we show that muscle satellite cells bearing large CTG expansions (>3000) secrete a soluble factor that(More)