Learn More
Thyroid hormone (3,5,3'-triiodothyronine; T(3)) is essential for normal development of the vertebrate brain, influencing diverse processes such as neuronal migration, myelin formation, axonal maturation, and dendritic outgrowth. We have identified basic transcription element-binding protein (BTEB), a small GC box-binding protein, as a T(3)-regulated gene in(More)
Myotonic Dystrophy type I (DM1) is caused by an abnormal expansion of CTG triplets in the 3' UTR of the dystrophia myotonica protein kinase (DMPK) gene, leading to the aggregation of the mutant transcript in nuclear RNA foci. The expanded mutant transcript promotes the sequestration of the MBNL1 splicing factor, resulting in the misregulation of a subset of(More)
Myotonic dystrophy type 1 (DM1) is caused by an unstable CTG repeat expansion in the 3'UTR of the DM protein kinase (DMPK) gene. DMPK transcripts carrying CUG expansions form nuclear foci and affect splicing regulation of various RNA transcripts. Furthermore, bidirectional transcription over the DMPK gene and non-conventional RNA translation of repeated(More)
The steroid receptor RNA activator (SRA) has the unusual property to function as both a non-coding RNA (ncRNA) and a protein SRAP. SRA ncRNA is known to increase the activity of a range of nuclear receptors as well as the master regulator of muscle differentiation MyoD. The contribution of SRA to either a ncRNA or a protein is influenced by alternative(More)
Cytoplasmic seleno-glutathione peroxidase, by reducing hydrogen peroxide and fatty acid hydroperoxides, may be a major protective enzyme against oxidative damage in the brain. Oxidative damage is strongly suspected to contribute to normal aging and neurodegenerative process of Alzheimer's and Parkinson's diseases. We report here an immunocytochemical(More)
There is increasing evidence that oxygen free radicals contribute to ischemic brain injury. It is unclear, however, to what extent specific antioxidant enzymes can prevent or reverse the impairment of synaptic function caused by transient hypoxia. In this study, we investigated in transgenic (Tg) mice whether a moderate increase in glutathione peroxidase-1(More)
BACKGROUND MicroRNAs (miRNAs) are small RNA molecules that post-transcriptionally regulate gene expression and have been shown to play an important role during development. miR-1, miR-133a, miR-133b and miR-206 are expressed in muscle tissue and induced during muscle cell differentiation, a process that directs myoblasts to differentiate into mature(More)
Myotonic dystrophy (DM) is a multi-system neuromuscular disorder for which there is no treatment. We have developed a medium throughput phenotypic assay, based on the identification of nuclear foci in DM patient cell lines using in situ hybridization and high-content imaging to screen for potentially useful therapeutic compounds. A series of further assays(More)
Muscle cell cultures derived from a myotonic dystrophy (DM1) fetus were established in order to determine on the one hand, whether the differentiation of DM1 myoblasts is altered and, on the other hand, whether the levels of myotonic dystrophy protein kinase (DMPK) protein is decreased in DM1 muscle cells. DM1 myoblasts isolated from a quadriceps of a(More)
AIMS Myotonic dystrophy type 1 (DM1), one of the most common forms of inherited neuromuscular disorders in the adult, is characterized by progressive muscle weakness and wasting leading to distal muscle atrophy whereas proximal muscles of the same patients are spared during the early phase of the disease. In this report, the role of satellite cell(More)