Learn More
Mutations in ion channels involved in the generation and termination of action potentials constitute a family of molecular defects that underlie fatal cardiac arrhythmias in inherited long-QT syndrome. We report here that a loss-of-function (E1425G) mutation in ankyrin-B (also known as ankyrin 2), a member of a family of versatile membrane adapters, causes(More)
The various cardiac regions have specific action potential properties appropriate to their electrical specialization, resulting from a specific pattern of ion-channel functional expression. The present study addressed regionally defined differential ion-channel expression in the non-diseased human heart with a genomic approach. High-throughput real-time(More)
BACKGROUND The SCN5A gene encoding the human cardiac sodium channel alpha subunit plays a key role in cardiac electrophysiology. Mutations in SCN5A lead to a large spectrum of phenotypes, including long-QT syndrome, Brugada syndrome, and isolated progressive cardiac conduction defect (Lenègre disease). METHODS AND RESULTS In the present study, we report(More)
The generation of the mammalian heartbeat is a complex and vital function requiring multiple and coordinated ionic channel activities. The functional role of low-voltage activated (LVA) T-type calcium channels in the pacemaker activity of the sinoatrial node (SAN) is, to date, unresolved. Here we show that disruption of the gene coding for CaV3.1/alpha1G(More)
Even though sequencing of the mammalian genome has led to the discovery of a large number of ionic channel genes, identification of the molecular determinants of cellular electrical properties in different regions of the heart has been rarely obtained. We developed a high-throughput approach capable of simultaneously assessing the expression pattern of(More)
BACKGROUND We have previously linked hereditary progressive cardiac conduction defect (hereditary Lenègre's disease) to a loss-of-function mutation in the gene encoding the main cardiac Na+ channel, SCN5A. In the present study, we investigated heterozygous Scn5a-knockout mice (Scn5a+/- mice) as a model for hereditary Lenègre's disease. METHODS AND RESULTS(More)
Long Q-T mutant (KvLQT1) K(+) channels associate with their regulatory subunit IsK to produce the slow component of the delayed rectifier potassium (I(Ks)) cardiac current. The amplitude of KvLQT1 current depends on the expression of a KvLQT1 splice variant (isoform 2) that exerts strong dominant negative effects on the full-length KvLQT1 protein (isoform(More)
Phosphatidylinositol-4,5-bisphosphate (PIP(2)) is a major signaling molecule implicated in the regulation of various ion transporters and channels. Here we show that PIP(2) and intracellular MgATP control the activity of the KCNQ1/KCNE1 potassium channel complex. In excised patch-clamp recordings, the KCNQ1/KCNE1 current decreased spontaneously with time.(More)