Learn More
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS(More)
A bacterial signal sequence was fused to the colicin A pore-forming domain: the exported pore-forming domain was highly cytotoxic. We thus introduced a cysteine-residue pair in the fusion protein which has been shown to form a disulfide bond in the natural colicin A pore-forming domain between alpha-helices 5 and 6. Formation of the disulfide bond prevented(More)
Three double cysteine mutants, each possessing a disulfide bond in its pore-forming domain, were used to study the translocation of colicin A through the Escherichia coli envelope. These mutated colicins were able to exert their in vivo channel activity only after their disulfide bonds had been reduced by dithiothreitol. In solution, the reduction of the(More)
Pore-forming colicins are soluble bacteriocins which form voltage-gated ion channels in the inner membrane of Escherichia coli. To reach their target, these colicins first bind to a receptor located on the outer membrane and then are translocated through the envelope. Colicins are subdivided into two groups according to the envelope proteins involved in(More)
Four disulfide bonds were engineered into the pore-forming domain of colicin A to probe the conformational changes associated with its membrane insertion and channel formation. The soluble pore-forming domain consists of 10 alpha-helices with two outer layers (helices 1, 2, and 3-7, respectively) sandwiching a middle layer of three helices (8-10). Helices 8(More)
The voltage-dependent gating of the colicin channel involves a substantial structural rearrangement that results in the transfer of about 35% of the 200 residues in its pore-forming domain across the membrane. This transfer appears to represent an unusual type of protein translocation that does not depend on a large, multimeric, protein pore. To investigate(More)
The ion-channel-forming C-terminal fragment of colicin A binds to negatively charged lipid vesicles and provides an example of the insertion of a soluble protein into a lipid bilayer. The soluble structure is known and consists of a ten-helix bundle containing a hydrophobic helical hairpin. In this study fluorescence resonance energy transfer spectroscopy(More)
Four colicin A double-cysteine mutants possessing a disulfide bond in their pore-forming domain were constructed to study the translocation and the pore formation of colicin A. The disulfide bonds connected alpha-helices 1 and 2, 2 and 10, 3 and 9, or 3 and 10 of the pore-forming domain. The disulfide bonds did not prevent the colicin A translocation(More)
The pore-forming domain of colicin A (pfColA) fused to a prokaryotic signal peptide (sp-pfColA) is transported across and inserts into the inner membrane of Escherichia coli from the periplasmic side and forms a functional channel. The soluble structure of pfColA consists of a ten-helix bundle containing a hydrophobic helical hairpin. Here, we generated a(More)
The endonuclease colicin E2 (ColE2), a bacteriocidal protein, and the associated cognate immunity protein (Im2) are released from producing Escherichia coli cells. ColE2 interaction with the target cell outer membrane BtuB protein and Tol import machinery allows the dissociation of Im2 from its colicin at the outer membrane surface. Here, we use in vivo(More)