Learn More
Recently there has been a lot of interest in geometrically motivated approaches to data analysis in high dimensional spaces. We consider the case where data is drawn from sampling a probability distribution that has support on or near a submanifold of Euclidean space. In this paper, we propose a novel subspace learning algorithm called neighborhood(More)
Matrix factorization techniques have been frequently applied in information retrieval, computer vision, and pattern recognition. Among them, Nonnegative Matrix Factorization (NMF) has received considerable attention due to its psychological and physiological interpretation of naturally occurring data whose representation may be parts based in the human(More)
In supervised learning scenarios, feature selection has been studied widely in the literature. Selecting features in unsupervised learning scenarios is a much harder problem, due to the absence of class labels that would guide the search for relevant information. And, almost all of previous unsupervised feature selection methods are " wrapper " techniques(More)
Linear Discriminant Analysis (LDA) has been a popular method for extracting features which preserve class separability. The projection vectors are commonly obtained by maximizing the between class covariance and simultaneously minimizing the within class covariance. In practice, when there is no sufficient training samples, the covariance matrix of each(More)
Following the intuition that the naturally occurring face data may be generated by sampling a probability distribution that has support on or near a submanifold of ambient space, we propose an appearance-based face recognition method, called orthogonal Laplacianface. Our algorithm is based on the locality preserving projection (LPP) algorithm, which aims at(More)
Linear Discriminant Analysis (LDA) is a popular data-analytic tool for studying the class relationship between data points. A major disadvantage of LDA is that it fails to discover the local geometrical structure of the data manifold. In this paper, we introduce a novel linear algorithm for discriminant analysis, called Locality Sensitive Discriminant(More)
The ability of fast similarity search at large scale is of great importance to many Information Retrieval (IR) applications. A promising way to accelerate similarity search is semantic hashing which designs compact binary codes for a large number of documents so that semantically similar documents are mapped to similar codes (within a short Hamming(More)
A new web content structure analysis based on visual representation is proposed in this paper. Many web applications such as information retrieval, information extraction and automatic page adaptation can benefit from this structure. This paper presents an automatic top-down, tag-tree independent approach to detect web content structure. It simulates how a(More)
Subspace learning based face recognition methods have attracted considerable interests in recently years, including principal component analysis (PCA), linear discriminant analysis (LDA), locality preserving projection (LPP), neighborhood preserving embedding (NPE), marginal fisher analysis (MFA) and local discriminant embedding (LDE). These methods(More)